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Abstract

Full factorial breeding designs are useful for quantifying the amount of additive

genetic, nonadditive genetic, and maternal variance that explain phenotypic

traits. Such variance estimates are important for examining evolutionary poten-

tial. Traditionally, full factorial mating designs have been analyzed using a two-

way analysis of variance, which may produce negative variance values and is

not suited for unbalanced designs. Mixed-effects models do not produce nega-

tive variance values and are suited for unbalanced designs. However, extracting

the variance components, calculating significance values, and estimating confi-

dence intervals and/or power values for the components are not straightforward

using traditional analytic methods. We introduce fullfact – an R package

that addresses these issues and facilitates the analysis of full factorial mating

designs with mixed-effects models. Here, we summarize the functions of the

fullfact package. The observed data functions extract the variance explained

by random and fixed effects and provide their significance. We then calculate

the additive genetic, nonadditive genetic, and maternal variance components

explaining the phenotype. In particular, we integrate nonnormal error struc-

tures for estimating these components for nonnormal data types. The resam-

pled data functions are used to produce bootstrap-t confidence intervals, which

can then be plotted using a simple function. We explore the fullfact pack-

age through a worked example. This package will facilitate the analyses of

full factorial mating designs in R, especially for the analysis of binary, propor-

tion, and/or count data types and for the ability to incorporate additional

random and fixed effects and power analyses.

Introduction

The full factorial mating design (also known as the North

Carolina II design), such that dams and sires are mated

in all possible pairwise combinations, has the advantage

of estimating the genetic variance (VG) and environmen-

tal variance (VE) components of the phenotypic variance

(VP) of offspring traits (Lynch and Walsh 1998, p. 598).

Genetic variance can be further divided into additive

genetic variance (VA, effects of gene substitution) and

nonadditive genetic variance (VN, effects of dominance,

the interactions between alleles, and effects of epistasis,

the interactions between loci). Indeed, the full factorial

mating design is one of the best methods to simultane-

ously estimate phenotypic additive and nonadditive

genetic variance (dominance variance because epistasis

variance is assumed to be of negligible importance)

(Lynch and Walsh 1998; Neff and Pitcher 2005; Neff et al.

2011). This design has been used in numerous studies to

produce at least 100 estimates of genetic variance (Puurti-

nen et al. 2009). Environmental variance sources can

include experimental treatment differences, developmental

differences, and maternal environmental differences

(Lynch and Walsh 1998). In addition, the phenotypic

variance of traits can also be composed of genotype by

environment variance (VG9E, effects of the interactions

between genotypes and environments), which is of inter-

est to the study of local adaptation, inbreeding depres-

sion, outbreeding depression, and domestication

(Allendorf et al. 2013). Using a common experimental
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environment for rearing families may reduce some

sources of environmental variance to better estimate

genetic variance (Lynch and Walsh 1998).

The genetic and maternal variance of traits is of inter-

est for studying evolutionary potential of the traits. Addi-

tive genetic variance can be used to predict the response

to selection pressures. However, nonadditive genetic vari-

ance can be converted to additive genetic variance if there

is a change in allele frequency, for example, during a bot-

tleneck because of random genetic drift (Carson 1990).

Also, the maternal variance (maternal genetic and envi-

ronmental variance) of traits can influence the evolution-

ary potential of the species based on the correlation

between maternal and offspring traits and the phenotypic

plasticity of female traits (Kirkpatrick and Lande 1989;

Mousseau and Fox 1998; R€as€anen and Kruuk 2007).

Therefore, estimating the additive, nonadditive, and

maternal variance contributions of traits is fully needed

to understand evolutionary potential.

Full Factorial Analysis and Issues

Full factorial mating designs, such that n dams and n

sires are mated in all possible pairwise combinations

(n 9 n), have traditionally been analyzed using two-way

analysis of variance (ANOVA) with mean squares (Lynch

and Walsh 1998, p. 600). The phenotypic variance of off-

spring traits is composed of measurements from the fami-

lies, and this variance is partitioned into components for

the dam (VD, maternal genetic and environmental vari-

ance), the sire (VS, paternal genetic variance), and the

dam by sire interaction (VD9S, nonadditive genetic vari-

ance). Assuming the effects of epistasis are of negligible

importance, the additive genetic variance (VA) component

is calculated as four times the sire (VS), the nonadditive

genetic variance (VN) component as four times the dam

by sire interaction (VD9S), and the maternal variance

component (VM) as the dam (VD) – sire (VS) (Lynch and

Walsh 1998, p. 603). When there is epistasis, those vari-

ance components will be overestimated and this may

explain why the percentage of phenotypic variance

explained by the components can add up to more than

100% in certain cases (Neff and Pitcher 2005).

There are a couple of issues that can arise from using

two-way ANOVAs to analyze full factorial mating designs:

(1) the possibility of negative variance components, for

example, insufficient data; and (2) the influence of unbal-

anced sample sizes, for example, different family sizes or

missing family values (Lynch and Walsh 1998, p. 779;

Graham and Edwards 2001; Neff and Pitcher 2005). The

estimation of the variance components as random effects

using maximum likelihood (ML) or restricted maximum

likelihood (REML) does not produce negative variance

components and is not sensitive to unbalanced sample

sizes. The mixed-effects models package lme4 (Bates

et al. 2015) for the statistical program R (R Development

Core Team 2015) is suited for full factorial mating

designs because the functions can model several random

and fixed effects using ML and REML.

Yet, we developed the fullfact package because of

the analytical difficulty of extracting variance components

and confidence intervals (or significance values and power

values) for these components. In particular, the expansion

of data to the individual-level to properly estimate vari-

ance components (Puurtinen et al. 2009) is underutilized.

This expansion can be time-consuming if performed by

hand, and there is no function (until now) to expand the

data. In addition, producing confidence intervals for the

variance components is underutilized because it can be

time-consuming and requires higher level coding to

resample the data (typically 1000 times) and apply a new

model to each of the data sets. Confidence intervals

would be useful for visualization of the components and

also have the advantage of statistically comparing pairwise

groups, such as populations (Houde et al. 2013, 2015).

We also developed the fullfact package to incorpo-

rate fixed effects and nonnormal models, which are also

underutilized for these types of analyses. For example,

previous full factorial analyses have used normal models

for proportion type data (e.g., Pitcher and Neff 2007).

The fullfact package more carefully examines the

parameter space and can conduct other helpful analyses,

including the assay of statistical power (both a priori

using simulated data based on the literature and post hoc)

for full factorial mating designs. This study summarizes

and incorporates recent advances for extracting the vari-

ance components of fixed effects (e.g., Snijders and Bos-

ker 1999; Nakagawa and Schielzeth 2013) and from

nonnormal models (that do not provide the residual vari-

ance found in normal models, so the residual variance

needs to be added) (Nakagawa and Schielzeth 2010,

2013). Finally, we provide an example using the full-
fact package for Chinook salmon (Oncorhynchus tsha-

wytscha) nonnormal early-life survival data using an

11 9 11 factorial which was originally analyzed by Pitcher

and Neff (2007).

The Fullfact Package

For direct installation into R, the stable release version of

fullfact is available from CRAN (http://CRAN.R-pro-

ject.org). Installation of the mixed-effects models package

lme4 (Bates et al. 2015) is a prerequisite for the func-

tionality of the fullfact package. Installation of the

analysis of factorial experiments package afex (Sing-

mann et al. 2015) may also be required if examining the
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significance of fixed effects. Functions within the full-
fact package were produced based on three levels of

complexity for the experimental design: (1) simple (desig-

nated by no number) for the standard model, that is,

containing random effects for dam, sire, and dam by sire;

(2) advanced (designated by the number 2) for the stan-

dard model with the options of including additional ran-

dom effects for one position (e.g., tank) and/or one block

effect (e.g., several blocks of 2 9 2 factorial matings); and

(3) expert (designated by the number 3) for the standard

model with the ability of the user to include additional

fixed and random effects, such as a model including envi-

ronment treatments and their interactions (e.g., Evans

et al. 2010). The package was developed with four work-

flow stages in mind (Fig. 1): (1) data conversion (if appli-

cable); (2) analysis of variance components and power

analysis; (3) production of confidence intervals for vari-

ance components; and (4) visualization of the confidence

intervals.

Data conversion

For data that were recorded at the replicate-level, such as

the number of offspring dead or alive for survival, these

data should be converted to the individual-level to not

underestimate phenotypic variance and influence variance

component estimates (Puurtinen et al. 2009 and example

below). The buildBinary function can assign a binary

number (i.e., “0” or “1”) to two columns containing the

number of offspring and copy information by the number

Figure 1. The workflow stages of the fullfact package, highlighting its main analytical functions and simple plotting function.
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of times equal to the number of offspring. The final data

set will have a number of rows matching the total num-

ber of offspring. The buildMulti function is similar

and can assign multiple numbers to multiple columns.

Analysis of variance components

Normal data

The observLmer function is used for the standard

model (i.e., random effects for dam, sire, and dam by

sire) on observed normal data (e.g., continuous data)

with the Gaussian error structure. The advanced ob-
servLmer2 function can be used to model an additional

random effect for position and/or block. The expert ob-
servLmer3 function can be used to model any addi-

tional fixed and random effects. The three functions have

the option of estimating the parameters using maximum

likelihood (ML) or restricted maximum likelihood

(REML). ML estimates the parameters that maximize the

likelihood of the observed data and has the advantage of

using all the data and accounting for nonindependence

(Lynch and Walsh 1998, p. 779; Bolker et al. 2009). On

the other hand, ML has the disadvantage of assuming that

all fixed effects are known without error, producing a

downward bias in the estimation of the residual variance

component. This bias can be large if there are lots of

fixed effects, especially if sample sizes are small. REML

has the advantage of not assuming the fixed effects are

known and averages over the uncertainty, so there can be

less bias in the estimation of the residual variance compo-

nent. However, REML only maximizes a portion of the

likelihood to estimate the effect parameters, but is the

preferred method for analyzing large data sets with com-

plex structure.

All three functions extract the dam, sire, dam by sire,

and residual variance component. The observLmer2
and observLmer3 functions extract any additional ran-

dom effects and/or fixed effects variance components. The

component for fixed effects is extracted as a single group

by multiplying the design matrix of the fixed effects with

a vector of fixed effects estimates (Snijders and Bosker

1999; Nakagawa and Schielzeth 2013). The total variance

is calculated and each component is presented in its raw

and percentage values.

Two separate methods were used for determining the

significance of the random effects and fixed effects. For

each random effect, we used the recommended likelihood

ratio test (LRT) comparing the full model to a reduced

model without the single random effect (Bolker et al.

2009), and the function presents the Χ2 statistic, differ-

ence in Akaike information criterion (DAIC) value, differ-
ence in Bayesian information criterion (DBIC) value, and

P-value (degree of freedom is always 1). There are options

for ML and REML for the LRT. For determining the sig-

nificance of each fixed effect, because LRT is not generally

recommended for fixed effects and there are issues calcu-

lating the denominator degrees of freedom, we used a

parametric bootstrap method (Bolker et al. 2009). Specifi-

cally, we integrated the parametric bootstrap mixed
function of the afex package (Singmann et al. 2015)

into the observLmer3 function, which produces a base

distribution of likelihood Χ2 statistics using ML, that is,

then used for providing a P-value for the observed Χ2

statistic. Because LRT with ML is still used as an approxi-

mation of the significance of fixed effects (Pinheiro and

Bates 2000), we also provide the LRT Χ2 statistic, DAIC,
DBIC, and P-value.

The powerLmer, powerLmer2, and powerLmer3
functions are used for the power analyses of the variance

components using normal data. Power values are calcu-

lated by stochastically simulating data for a number of

iterations and then calculating the proportion of P-values

less than a (e.g., 0.05) for each component (Bolker 2008).

P-values for the random and fixed effects are calculated

using REML or ML or parametric bootstrap as described

above. Simulated data are specified by inputs for known

variance component values and the sample sizes.

Nonnormal data

Equivalents to the lmer functions are available for

observed nonnormal data (e.g., binary, proportion, and

count data), specifically the observGlmer, ob-
servGlmer2, and observGlmer3 functions. There

are also three functions for nonnormal data power analy-

sis, that is, powerGlmer, powerGlmer2, and power-
Glmer3. The three observed functions estimate

parameters using Laplace approximation because there

were more advantages relative to penalized quasi-likeli-

hood and Gauss–Hermite quadrature parameter estima-

tion methods; that is, penalized quasi-likelihood is not

recommended for count responses with means less than

five and binary responses with less than five successes per

group. Gauss–Hermite quadrature is not recommended

for more than two or three random effects because of the

rapidly declining analytical speed with the increasing

number of random effects. Because Laplace approxima-

tion is a true likelihood method (Bolker et al. 2009), the

likelihood ratio tests use ML. The three glmer observed

functions extract the variance components and perform

the same calculations and significance tests as their lmer

equivalents.

Binomial and Poisson error structures with four links

are supported by the three glmer functions because the

residual variance component of these error structures and
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links are specified by Nakagawa and Schielzeth (2010,

2013). Specifically, the residual variance component for

binomial errors with the logit link is p2/3; binomial errors

with the probit link is 1; Poisson errors with the log link

is ln(1/exp(b0) + 1), where b0 is the intercept value from

the model without any fixed effects and containing only

the random effects; and Poisson errors with the square-

root link is 0.25. We have also included an option to

account for overdispersion of proportion data (i.e., quasi-

binomial) and count data (i.e., quasi-Poisson); there is no

overdispersion with binary data (Crawley 2005). Specifi-

cally, an additional observation-level random effect is

added to the model to account, and also act as a test, for

overdispersion (Atkins et al. 2013).

Bootstrap confidence intervals for variance
components

Confidence intervals for the additive genetic, nonadditive

genetic, and maternal variance components can be pro-

duced using the bootstrap-t resampling method described

by Efron and Tibshirani (1993, p. 160–162). Observations
are resampled with replacement until the original sample

size is reproduced. The resampled data are then used in the

model, and the additive genetic, nonadditive genetic, and

maternal variance components are extracted. The process is

repeated for a number of iterations, typically 1000 times, to

produce a distribution for each component. The confidence

interval lower and upper limits and median are extracted

from the distribution using R’s generic quantile func-

tion. The resampRepli function is used to bootstrap

resample observations grouped by replicate identities

within family identities for a specified number of iterations

to create the resampled data set. Because of the large file

sizes that can be produced, the resampling of each family is

saved separately as a common separated (.csv) file in the

working directory, and these files are merged to create the

final bootstrap resampled data set. A similar resampFam-
ily function is able to resample observations grouped by

family identities only.

Next, equivalents to the observed data lmer and glmer

functions are available for the final bootstrap resampled

data set, that is, resampLmer, resampLmer2, and re-
sampLmer3 and resampGlmer, resampGlmer2, and
resampGlmer3. The functions provide a data frame

with columns containing the raw variance components

for dam, sire, dam by sire, residual, total, additive genetic,

nonadditive genetic, and maternal. Additional variance

components for each additional random effect and addi-

tional fixed effects as one group can also be provided in

columns. The number of rows in the data frame matches

the number of iterations in the resampled data set, and

each row represents a model number.

The ciMANA function is used to extract the bootstrap-

t confidence intervals and median for the additive genetic,

nonadditive genetic, and maternal values from the data

frame of models. Similarly, advanced ciMANA2 and

expert ciMANA3 can be used to extract the confidence

intervals and median from additional columns in the data

frame of models. The confidence level is specified as a

percentage (1 � a). The raw values are presented and are

converted to a percentage of the total variance for each

model.

Another advantage of the bootstrap-t method is the

statistical comparisons of additive genetic, nonadditive

genetic, and maternal variance components between pair-

wise groups, such as populations (Houde et al. 2013,

2015). Using the resampled data sets, for one group the

proportion of comparisons (i.e., variance components)

that are either larger or smaller than the other group is

calculated. The proportion serves as a one-tailed P-value

testing for differences between groups. For example, using

two groups and 1000 iterations for each group, the differ-

ence between groups is calculated for each paired itera-

tion number. If there are less than 50 instances (a = 5%

or 50 of 1000 iterations) with a difference less than zero

or less than 50 instances with a difference greater than

zero, there is a significant difference between groups.

The bootstrap-t method may produce medians that are

largely different from the observed values (Efron and Tib-

shirani 1993). The BCa method described by Efron and

Tibshirani (1993, p. 184–188) can be used for the correc-

tion of bootstrap-t confidence intervals. We have inte-

grated into the bootstrap-t confidence interval functions,

that is, ciMANA, ciMANA2, ciMANA3, inputs for bias

correction using the raw observed variance component

values and acceleration correction using the delete-one

observation jackknife data set (e.g., JackLmer, see

below).

Jackknife confidence intervals for variance
components

Confidence intervals for the additive genetic, nonadditive

genetic, and maternal variance components can also be

produced using the jackknife resampling method

described by Efron and Tibshirani (1993, p. 141–145).
The mean and the standard error of pseudo-values for

each variance component are calculated. The standard

error is then used with Student’s t-distribution to provide

the lower and upper limits for the confidence interval.

Because the delete-one observation jackknife resampling

may be computationally intensive for large data sets, the

functions have the option of delete-d observation jack-

knife resampling. We used M degrees of freedom for pro-

ducing the confidence interval (Martin et al. 2004):
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M = N/d, where N is the total number of observations

and d is the number of deleted observations. Large values

of M, such as 1000, can translate to the delete-d jackknife

resampling method approaching bootstrap resampling

expectations (Efron and Tibshirani 1993, p. 149).

Equivalents to the observed data lmer and glmer func-

tions are available for jackknife resampling, that is,

JackLmer, JackLmer2, and JackLmer3 and

JackGlmer, JackGlmer2, and JackGlmer3. The

default is delete-one jackknife resampling. For the option

of delete-d jackknife resampling, the rows of the observed

data frame are shuffled and a block of observations of size d

is deleted sequentially. The functions provide a data frame

with columns containing the raw variance components for

dam, sire, dam by sire, residual, total, additive genetic, non-

additive genetic, and maternal. Additional variance compo-

nents for each addition random effect and additional fixed

effects as one group can also be provided in columns. The

number of rows in the data frame matches the total num-

ber of observations (N) for delete-one jackknife resampling

or M groups for delete-d jackknife resampling to the lowest

integer. Each row represents a deleted single observation or

deleted-d observations group.

The ciJack function is used to extract the jackknife

confidence intervals and pseudo-value means of the addi-

tive genetic, nonadditive genetic, and maternal variance

components from the jackknife data frame. Similarly,

advanced ciJack2 and expert ciJack3 can be used to

extract the confidence intervals and pseudo-value means

from additional columns in the data frame of models.

The functions have inputs for the raw observed variance

component values to calculate the pseudo-values. The

confidence level is specified as a percentage (1 � a). The
raw values are presented and are converted to a percent-

age of the total variance for each row of the jackknife

data frame.

Visualization of the confidence intervals

The barMANA and boxMANA functions are simple plot-

ting functions for the confidence intervals or all values

from the bootstrap and jackknife data frames. The bar-
MANA function produces bar graphs with the median or

pseudo-value mean as the top of the shaded bar and error

bars covering the range of the confidence interval for each

of the additive genetic, nonadditive genetic, and maternal

values of a phenotypic trait, as well as producing a simple

legend. The boxMANA function produces boxplots using

all values for three components. In addition, the functions

can plot several graphs grouped by labels to visualize sev-

eral phenotypic traits. Within the functions, there are

simple plot modifications available, such as changing the

range of the y-axis and the length of the error bars.

Worked Example: Chinook Salmon
Survival to Hatching

An 11 9 11 factorial mating design was used to produce

Chinook salmon offspring, that is, crossing 11 dams with

11 sires in all possible pairwise combinations (additional

details of methods and original two-way ANOVA are

described in Pitcher and Neff (2007)). There were two

replicates for each of the 121 families, each containing 150

eggs or individuals. Each family replicate was haphazardly

placed into an incubation cell (n = 16) within a tray

(n = 16). A subsample of 10 eggs per dam was measured

for egg diameter (nearest 0.1 mm) using digital calipers;

mean egg diameter per dam was used in the analyses. The

number of individuals (i.e., counts) that died before hatch-

ing or survived to hatching was collected for each of the

two replicates per family. In this example, we go through

the entire workflow for survival as a binary variable and we

also demonstrate how using the original replicate-level data

can influence variance component estimates. Statistical sig-

nificance is set at a = 0.05. A simulated data example for

survival and another worked example for a continuous

variable (i.e., length at hatch) are provided in the supple-

mentary information.

Step 1: Analysis of variance components

Because the data were recorded at the replicate-level, we

will convert the data to the individual-level using the

buildBinary function. The input contains the original

data (i.e., chinook_survival) with the column numbers

(1–6 and 9) to copy corresponding to family, replicate,

dam, sire, tray, cell, and egg size. The input also contains

two column names for the number of individuals to be

assigned a “1” value and a “0” value in quotations, that

is, “alive” and “dead.” The output is a data frame that

contains a new column named “status.”

Because we are interested in examining whether there

is a relationship between survival and egg size and

accounting for two potential position effects (i.e., tray

and cell) that may be nuisance sources of environmental

variance contributing to the phenotype, the initial model

(an object named “survival_mod1”) includes one fixed

effect for the mean egg diameter of each dam (i.e., egg

size), one random effect for tray, and one random effect
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for cell. We will use the observGlmer3 function

because it can handle fixed effects. The input contains the

observed data frame (i.e., chinook_survival2), and the col-

umn names contain the dam, sire, and response in quota-

tions. The input also contains the family (i.e., error

structure) and link using the R format. Because the indi-

vidual-level survival data are binary, for “fam_link” we

use “binomial(logit).” Internally, the function has the

dam, sire, and dam by sire as random effects, so the input

also contains the “remain” fixed and random effects for

the model in quotations using the lme4 package formula

format (Bates et al. 2015).

The output object contains significant random effects

for dam (14.7% of the phenotypic variance), sire

(3.8%), and dam by sire (3.8%). Additive genetic, non-

additive genetic, and maternal variance explain similar

amounts of the phenotypic variance (15.0%, 15.1%,

and 11.0%). With the addition of the residual compo-

nent, the components can sum to more than 100% if

there is epistasis (Neff and Pitcher 2005). None of the

fixed effects (i.e., egg size) or random effects for posi-

tion (i.e., tray and cell) were significant, so we can

reduce the number of effects and use the ob-
servGlmer function to make a new reduced model,

which has results similar to the full model (see supple-

mentary information). Below, we evaluate the power of

this new model using the powerGlmer function with

300 offspring per family and 500 simulations. The

power values were larger than 0.8% or 80% for the

dam, sire, and dam by sire variance components.

Step 2: Production of confidence intervals
for variance components

To produce bootstrap-t confidence intervals for the addi-

tive genetic, nonadditive genetic, and maternal variance

components, first the observed data for every replicate

within family are resampled with replacement for a given

number of iterations using the resampRepli function.

The input contains the observed data frame (i.e., chi-

nook_survival2) and the column numbers to copy as a

vector, so we include the column numbers for response

(i.e., status, 1), dam (4), and sire (5). The input also con-

tains the column names for the family column and repli-

cate column in quotations. The final resampled data set

will be located in the working directory.

Second, we apply a common model to each iteration of

the resampled data set using the resampGlmer func-

tion. The input contains the final resampled data set (i.e.,

chinook_resampS), the column names for dam, sire, and

the response in quotations, and the starting model itera-

tion and ending model iteration. Each row of the output

represents a model iteration number.

Third, we extract the bootstrap-t confidence intervals

and median from the variance component data frame

using the ciMANA function. The input is the variance

component data frame (i.e., chinook_bootS). We used

the default confidence level of 95% because our a is

0.05 for statistical significance and the default percent-

age rounding off to one decimal place. Internally, all

variance components within a row are converted to

percentages of the total variance value of that row.

The output is presented as raw values and the percent-

ages.
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Step 3: Visualization of the confidence
intervals

A simple plot of the additive genetic, nonadditive genetic,

and maternal raw variance component values is produced

using the boxMANA function (Fig. 2). The input contains

the variance component data frame (i.e., chinook_bootS)

and opens an R graphics device window. After looking at

the initial plot (not shown), we included additional input

parameters for the unit increment of the y-axis, minimum

and maximum values of the y-axis, and the size of the

label on the y-axis. The plot shows that additive genetic,

nonadditive genetic, and maternal effects are contributing

to the phenotypic variance of survival to hatching for the

Chinook salmon 11 9 11 factorial mating.

Analysis of variance components:
individual-level versus replicate-level data

To demonstrate how using replicate-level survival data

can influence variance components, we used the original

replicate-level proportion data (i.e., proportion of indi-

viduals alive to hatch) and compared it to the individual-

level binary data using the same “fam_link.” We previ-

ously tested for overdispersion of the proportion data

using the option in the input of observGlmer function,

which was nonsignificant, so the overdispersion parameter

was removed (see supplementary information).

The analysis with the proportion data displays slightly

higher additive genetic variance by 1.3%, whereas the

nonadditive genetic variance largely decreased and is now

close to 0% and the maternal variance decreased by 5.6%,

relative to the analysis with binary data. A similar effect is

observed using the family means of length at hatch per

replicate; there was a large decrease in nonadditive genetic

variance but maternal variance increased in this case (see

supplementary information). For both the survival and

length data, there was a decrease in the phenotypic (total)

variance using means of replicates as suggested by Puurti-

nen et al. (2009). However, Puurtinen et al. (2009) also

suggested an increase in genetic variance, but our analyses

suggest that changes in additive genetic variance may be

minor compared to the large decreases in nonadditive

genetic variance and apparently variable changes in

maternal variance for certain traits.

Conclusion

We aimed to produce an analytical tool for mixed-effects

models in R to be used with full factorial mating designs.

Mixed-effects models are appropriate for unbalanced

designs and do not produce negative components, relative

to the traditional two-way ANOVA (Lynch and Walsh

1998). The fullfact package contains functions to cal-

culate additive genetic, nonadditive genetic, and maternal

variance components that explain the phenotype, as well

as providing significance values, power values, and confi-
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Figure 2. Boxplots of the additive genetic, nonadditive genetic, and

maternal effects underlying the phenotypic variance of the survival to

hatching for Chinook salmon (Oncorhynchus tshawytscha). The lower

and upper ends of each box represent the 25th and 75th quartiles,

respectively. Medians are represented by the bold bar in each box.

Outliers are represented by dots that are 1.5 times the interquantile

range. Code is as follows: boxMANA(comp=chinook_bootS,

type=“raw”, yunit=0.1, ymin=0.5, ymax=1, cex_ylab=

1.3).
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dence intervals for these components. This package also

contains various functions that build on the analysis of

full factorial mating designs by providing: (1) more accu-

rate estimates of phenotypic variance; (2) incorporating

the residual variance components for nonnormal error

structures (e.g., binary, proportion, and/or count data

types); and (3) tests of the significance of any additional

variables (i.e., additional random and fixed effects). The

fullfact package will ultimately facilitate and enhance

the analyses of full factorial mating designs in R.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. Additional models from Chinook salmon sur-

vival to hatching worked example described in main text.

Data S2. Simulated data example of survival.

Data S3. Worked example for Chinook salmon length at

hatch.
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