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Acute thermal stress elicits interactions between gene expression
and alternative splicing in a fish of conservation concern
Matt J. Thorstensen1,*, Andy J. Turko2,3,4, Daniel D. Heath4, Ken M. Jeffries1 and Trevor E. Pitcher4

ABSTRACT
Transcriptomic research provides a mechanistic understanding of an
organism’s response to environmental challenges such as increasing
temperatures, which can provide key insights into the threats posed by
thermal challenges associated with urbanization and climate change.
Differential gene expression and alternative splicing are two elements
of the transcriptomic stress response that may work in tandem, but
relatively few studies have investigated these interactions in fishes of
conservation concern. We studied the imperilled redside dace
(Clinostomus elongatus) as thermal stress is hypothesized to be an
important cause of population declines. We tested the hypothesis that
gene expression–splicing interactions contribute to the thermal stress
response. Wild fish exposed to acute thermal stress were compared
with both handling controls and fish sampled directly from a river. Liver
tissuewas sampled to study the transcriptomic stress response.With a
gene set enrichment analysis, we found that thermally stressed fish
showed a transcriptional response related to transcription regulation
and responses to unfolded proteins, and alternatively spliced genes
related to gene expression regulation and metabolism. One splicing
factor, prpf38b, was upregulated in the thermally stressed group
compared with the other treatments. This splicing factor may have a
role in the Jun/AP-1 cellular stress response, a pathway with wide-
ranging and context-dependent effects. Given large gene interaction
networks and the context-dependent nature of transcriptional
responses, our results highlight the importance of understanding
interactions between gene expression and splicing for understanding
transcriptomic responses to thermal stress. Our results also reveal
transcriptional pathways that can inform conservation breeding,
translocation and reintroduction programs for redside dace and other
imperilled species by identifying appropriate source populations.

KEY WORDS: Differential exon usage, Redside dace, Clinostomus
elongatus, Transcriptomics, mRNA transcription, CTmax,
Species at risk

INTRODUCTION
Environmental temperature influences many aspects of the
physiology and behaviour of ectothermic animals (Fry, 1947;
Schulte, 2015). The thermal environment, especially maximum

temperatures, is therefore one of the most important factors that
determines the fundamental niche, and thus geographic distribution,
of many ectotherms (Bennett et al., 2021; Bozinovic et al., 2011;
Day et al., 2018). Aquatic systems are especially vulnerable to
increasing temperatures in conjunction with other factors, which can
threaten resource availability and biodiversity (Dudgeon, 2019).
Anthropogenic disturbances, ranging in scope from global climate
change to local land use changes, have increased maximum water
temperatures in many aquatic systems, and these temperature
extremes are predicted to become more severe (O’Reilly et al.,
2015). This warming is hypothesized to be a threat to the
distribution and even long-term persistence of many aquatic
species (Heino et al., 2009; Myers et al., 2017). However, there is
a high degree of interspecific variation in thermal sensitivity even
among species that share a common habitat, and the underlying
physiological mechanisms are poorly understood (Komoroske et al.,
2021; Pörtner et al., 2017). An improved mechanistic understanding
of responses to high temperatures is important for predicting
population responses to thermal challenges and for guiding recovery
actions, particularly for species at risk (e.g. Eliason et al., 2011;
Lefevre et al., 2021; McDonnell et al., 2021; Wenger et al., 2011).

Transcriptomic research has emerged as a powerful tool for
characterizing the mechanisms of organismal response to stressors
such as high temperature, which can then be applied to conservation
management (Connon et al., 2018). Comparisons of molecular
responses among populations can reveal the mechanisms underlying
vulnerable and resistant populations in response to a stressor, with
implications for managing habitat and guiding reintroduction (e.g.
Jeffries et al., 2019). In addition to tests of mRNA abundance, RNA
sequencing also enables tests of alternative splicing (Salisbury et al.,
2021). Instead of mRNA abundance changing in response to a
stressor as in differential gene expression (Conesa et al., 2016; Jeffries
et al., 2021), exons within genes are differentially assembled in post-
transcriptional modifications of RNA.

Although mRNA abundance is better understood than alternative
splicing in the eukaryotic stress response (Salisbury et al., 2021),
splicing also contributes to controlling stress responses in plants,
yeast, fruit flies, shrimp and humans (Chaudhary et al., 2019; De
Nadal et al., 2011; Kornblihtt et al., 2013; Laloum et al., 2018; Zhang
et al., 2019). Furthermore, recent studies indicate that alternative
splicing is a key element of the response to environmental change in
fishes, such as salinity changes (Thorstensen et al., 2021), acute
hypoxia (Xia et al., 2018), cold acclimation (Healy and Schulte,
2019), cold stress (Li et al., 2020) and heat stress (Tan et al., 2019).
Differential splicing also contributes to evolutionary change
including local adaptation of ecotypes (Jacobs and Elmer, 2021;
Salisbury et al., 2021) and speciation (Singh et al., 2017; Terai et al.,
2003). However, relatively little is known about changes in splicing
following an acute thermal stress event (Tan et al., 2019).

Gene expression and alternative splicing have often been studied
separately, but recent work suggests these mechanisms should beReceived 22 February 2022; Accepted 27 May 2022
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considered in tandem (e.g. Healy and Schulte, 2019; Jacobs and
Elmer, 2021; Singh and Ahi, 2022). This combined approach can
reveal interactions between splicing and gene expression, such as by
differentially expressed splicing factors that contribute to
downstream splicing. For instance, transcription cofactor binding
genes were alternatively spliced, while genes involved in the
spliceosome were differentially expressed in a cold stress
experiment in Nile tilapia (Oreochromis niloticus) (Li et al.,
2020). Different splicing factors have been found to affect gene
expression in contexts outside of the thermal stress response,
sometimes referred to as cross-talk between gene expression and the
spliceosome (Änkö, 2014; Kim et al., 2018; Smith et al., 1989).
Therefore, we hypothesized that gene expression–splicing
interactions may also contribute to the acute heat stress response.
To understand the transcriptome-level interactions between

differential gene expression and alternative splicing, we studied
the regionally imperilled redside dace (Clinostomus elongatus).
This cyprinid inhabits cool-water streams in northeastern North
America, but population sizes and range areas have declined
dramatically (COSEWIC, 2017). Redside dace are considered
endangered in Canada (COSEWIC, 2017; Redside Dace Recovery
Team, 2010), and many populations are considered imperilled in the
United States (Serrao et al., 2018). Several studies suggest that redside
dace population declines may be linked to thermal stress resulting
from the combined effects of urbanization and climate change,
and that thermal tolerance varies among genetically distinct redside
dace populations (Leclair et al., 2020; Turko et al., 2020, 2021).
Understanding the mechanistic basis of these differences is important
for predicting thermal responses for different populations and for
guiding potential conservation programs such as translocation
or reintroduction based on captively bred individuals. Thus, in
addition to our main goal of testing the overarching ‘expression–
splicing interaction’ hypothesis, we also aimed to identify thermally
responsive genes of redside dace that can be applied to future
conservation reintroduction programs for this imperilled species.
Using individuals directly from their natal stream, we

experimentally investigated the molecular mechanisms underlying
the acute thermal stress response in awild population of redside dace
(see Fig. 1). We sampled livers from adult redside dace exposed to
acute thermal stress [following a standard critical thermal maximum
(CTmax) protocol; Turko et al., 2020] and two control groups:
‘wild’, fish sampled immediately after capture from the stream, and
‘handling control’, fish that were treated the same as thermally
stressed fish but kept at ambient temperatures. We used RNA
sequencing to profile differentially expressed and alternatively
spliced genes unique to thermal stress to understand the molecular
mechanisms that redside dace use to respond to acute thermal stress.
Differential gene expression was tested with mRNA abundance,
whereas alternative splicing was assessed with differentially used
exons from within mRNA transcripts. Our hypothesis was that the
thermal response involves interactions between splicing and gene
expression. This hypothesis predicts that splicing factors that show
differential expression in response to a thermal challenge are among
the specific genes that enable interactions between splicing and gene
expression. Therefore, splicing factors upregulated in the thermally
stressed fish compared with both other groups were analyzed for
possible connections with stress and thermal response genes.

MATERIALS AND METHODS
Fieldwork and thermal stress
Adult redside dace [Clinostomus elongatus (Kirtland 1840), N=30]
were collected using a seine net from a single pool in the Kokosing

River, OH, USA (40°32′43.1″N 82°39′15.2″W), over 2 days in
February 2019. Fish were then randomly assigned to one of three
treatments (each n=10): ‘wild’ fish, thermal stress or handling
control (Fig. 1). Wild fish were euthanized via blunt force trauma to
the head and spinal severance within 1 min of capture, the body
cavity was opened with a ventral incision, and fish were submerged
in a high salt solution (700 g l−1 ammonium sulfate, 25 mmol l−1

sodium citrate, 20 mmol l−1 ethylenediaminetetraacetic acid,
pH 5.2; Wellband and Heath, 2017) to preserve tissues for
transcriptomic analysis. Tissues were stored first at 4°C for 48 h
to facilitate preservation, and were subsequently stored at −20°C
until RNA extraction. For the thermally stressed group, fish were
subjected to a standard CTmax protocol as described in detail
elsewhere (Turko et al., 2020). Briefly, fish were quickly (within
10 min of capture) transferred to individual mesh-walled plastic
containers submerged in an aerated, thermostatically controlled
water bath (VWR model 1203) filled with river water. After a
15 min acclimation period, water temperature was raised by
0.33°C min−1 until fish could not maintain equilibrium (upright
position) in the water column for 3 s. Temperature and dissolved
oxygen (always >80%) were monitored throughout each experiment
(YSI Pro Plus multi-parameter instrument, Yellow Springs, OH,
USA). Once fish lost equilibrium (75–85 min), temperature was
recorded and fish were immediately euthanized and preserved as
described above. Although transcript levels often continue to rise
after an acute stressor and a recovery period of 1 h may have
captured this increase (Wiseman et al., 2007), the protocol was
chosen to identify early and acute transcriptional changes, as
opposed to longer-term patterns. Fish in the handling control group
were treated identically to thermally stressed fish except they did not
experience increased water temperatures. Instead, these fish were
sampled after the average length of a thermal stress experiment

N=30

Thermal
stress

Handling Wild

Gene
expression 

Alternative
splicing 

Expression–splicing interactions

n=10
each

Fig. 1. Conceptual diagram of experimental design and analysis
approaches. Redside dace (Clinostomus elongatus) were divided into three
experimental treatments of n=10 individuals each (N=30 total): CTmax as a
thermal stressor, a handling treatment where fish were handled as in the CTmax

protocol but not heated, and a wild control. Messenger RNA sequencing was
performed on liver tissue of all individuals. Genes showing differential
expression and alternative splicing were analyzed, with particular emphasis on
the thermal stress treatment compared with both others. We hypothesized that
gene expression–splicing interactions may contribute to the thermal stress
response, and analyzed differentially expressed splicing factors in the thermal
stress treatment. Spliced genes associated with the splicing factors were also
analyzed, with implications for expression–splicing interactions in the context
of thermal stress.
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(∼80 min). Hereafter, fish in the wild group are referred to as ‘wild’,
fish that underwent CTmax as the ‘thermal stress’ group, and fish that
were in the handling control as ‘handled’.

RNA extraction and sequencing
RNA was extracted from fish liver using RNeasy Plus Mini Prep
Kits (QIAGEN) following the manufacturer’s protocol. Liver was
chosen for its transcriptional plasticity (Jeffries et al., 2021) and key
roles in energy mobilization (Sheridan, 1988). Total RNAwas sent
to the Génome Québec Innovation Centre sequencing facility (http://
gqinnovationcenter.com), where 250 ng of total RNA per fish was
used with the NEBNext Poly(A) Magnetic Isolation Module (New
England BioLabs). RNA integrity number (RIN) scores assessed
with a Bioanalyzer (Agilent) were >7 for all fish (8.83±0.67,
mean±s.d.). Stranded cDNA libraries were created with the
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina
(New England Biolabs). The 30 fish were sequenced for paired-end
100 bp reads on one lane of a NovaSeq 6000 (Illumina). A mean of
50.5 million reads per sample were sequenced (±9.2 million s.d.)
(Table S1). Raw sequencing reads are available at the National
Center for Biotechnology Information Sequence Read Archive
(accession no. PRJNA692568).

Transcriptome assembly and annotation
Raw reads were trimmed with Trimmomatic version 0.36, where
reads under 36 bp long were discarded, leading and trailing base pairs
were discarded with Phred scores lower than 5, and a sliding window
of 4 bp was used where the window was removed if the average read
quality fell below 5 (Bolger et al., 2014). Read quality metrics before
and after trimming were checked with FastQC version 0.11.8 and
multiQC version 1.9 (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/; Ewels et al., 2016). Following trimming, a mean of
49.9 million reads per sample were retained (±9.2 million s.d.)
(Table S1). Trinity version 2.9 was used to assemble the
transcriptome with trimmed reads with default options, followed
by BUSCO version 3.0.2 with the ray-finned fish lineage
(actinopterygii_odb10) to assess transcriptome completeness
(Grabherr et al., 2011; Seppey et al., 2019). Trinotate version 3.2.0
was used for transcriptome annotation following software guidelines,
except RNAMMER was not used with these data (https://github.
com/Trinotate/Trinotate.github.io/wiki/Software-installation-and-
data-required) (Bryant et al., 2017). In short, the NCBI blastx and
blastp databases were used to search transcripts and predicted
proteins, respectively, HMMER version 3.3 was used to identify
protein families, signalP version 4.1 was used to identify signal
peptides, and tmhmm version 2 was used to identify transmembrane
helices (Altschul et al., 1990; Krogh et al., 2001; Petersen et al.,
2011; Wheeler and Eddy, 2013). All results were collected in
Trinotate for transcriptome annotations. Following Pearson (2013),
annotations were filtered for those with E-values <1×10−6 and bit
scores >50.
The SuperTranscripts pipeline was used because of its potential

for describing differential exon usage; SuperTranscript results were
thus also used for gene expression (Davidson et al., 2017). Here,
Salmon version 1.1.0 with the –dumpEq option was used for initial
transcript quantification against the reference transcriptome
(Patro et al., 2017). Equivalence classes from Salmon were used
in Corset version 1.07 to generate super-clusters with five
nucleotides minimum required to overlap between transcripts, and
super-clusters were discarded if over 1000 contigs aligned to them
(Davidson and Oshlack, 2014). A linear representation of
the transcriptome was generated with the Corset outputs and the

Trinity transcriptome using Lace version 1.14.1 (https://github.com/
Oshlack/Lace).

Differential gene expression
Corset counts for super-clusters were used for differential gene
expression (DGE) using edgeR version 3.30.3 (Robinson et al.,
2010). Although the counts from Corset super-clusters reflect gene
transcription (Buccitelli and Selbach, 2020; Jeffries et al., 2021), the
resulting statistical tests are referred to here as DGE in a manner
consistent with similar literature (e.g. Conesa et al., 2016). Count data
were first filtered for genes showing any expression. Then, a genewise
negative binomial generalized linear model with quasi-likelihood test
(glmQLFit) was used after data normalization and robust dispersion
estimation. The design formula for the model included experimental
group (wild, handled, thermally stressed) and RIN to explicitly model
differences in RNA quality between samples (Table S1) (Gallego
Romero et al., 2014). Pairwise comparisonswere drawn between each
experimental treatment using genewise negative binomial generalized
linear models with quasi-likelihood tests (glmQLFtest). Only clusters
significant at a Benjamini–Hochberg adjusted false discovery rate (q)
<0.05 were retained for downstream analyses (Benjamini and
Hochberg, 1995). In addition, clusters with higher or lower
expression in the thermal stress treatment compared with both the
wild and handled treatments (i.e. |log2-fold change| >0 comparedwith
both wild and handled) were retained as exhibiting ‘thermal stress-
specific’ expression. Multidimensional scaling as implemented in
edgeR and a heatmap were used to visualize broad patterns of
differential gene expression among all clusters and those specific to
thermal stress, respectively.

To find summary gene ontology (GO) terms represented by
differentially expressed and spliced super-clusters, we used the
EnrichR version 2.1 databases Biological Process 2018, Molecular
Function 2018 and Cellular Component 2018 (Kuleshov et al.,
2016). GO terms were analyzed in pairwise comparisons between
each experimental treatment in both the DGE and differential exon
usage (DEU) results. Because we were interested in patterns of
splicing and expression with respect to thermal tolerance, results
unique to the thermal stress experimental treatment were
given special attention. For DGE, statistically significant clusters
(q<0.05) that were either upregulated (log2-fold changes >0) or
downregulated (log2-fold changes <0) in the thermally stressed
treatment with respect to both the handled control and wild group
were retained for these thermal stress-specific results, in addition to
overall thermal stress-specific genes (|log2-fold change| >0). Gene
set enrichment analysis was conducted with overall thermal stress-
specific genes, because the upregulation of certain genes may
downregulate given pathways, and downregulation of other genes
may upregulate pathways (Reynolds et al., 2013). For visualization,
non-redundant GO terms for genes that showed thermal stress-
specific expression were explored with Revigo, where significant
GO terms and adjusted P-values were used with an allowed
semantic similarity of 0.7, and terms were searched against the
whole UniProt database (Supek et al., 2011).

Early response genes
To investigate the possibility that thermally stressed or handled fish
exhibited gene expression changes indicative of an acute stress
response, several early response genes were explored in the DGE
data. These were clusters annotated to the genes transcription factor
Jun/AP-1 ( jun), transcription factor jun-B ( jun-B), transcription
factor jun-D ( jun-D), immediate early response gene 2 (ier2),
myc proto-oncogene (myc), proto-oncogene c-Fos (c-Fos) and
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metallothiol transferase FosB ( fosB). The panel of early response
genes represents a positive control of genes we expected would
change in expression if the thermal and handling stressors were
reflected in a transcriptomic response (Bahrami and Drabløs, 2016;
Fowler et al., 2011; Jeffries et al., 2018; Sopinka et al., 2016).
Therefore, if differential expression was observed in these genes
in both the handling and CTmax groups compared with the wild
group, then genes that show differential expression between the
handling and CTmax groups are likely specific to the thermal stress
response.

Differential exon usage
Differential exon usage (DEU), or the relative usage of exons within
genes, was estimated using STAR version 2.7.3a to create splice
junction files for each individual (SJ.out.tab), which were
concatenated into one splice junction file (Dobin et al., 2013).
STAR was run in two-pass mode with all reads mapped on the first
pass. TheMobius.py script in Lace version 1.14.1 was used to create
a .gtf file from the Lace-clustered transcriptome and the splice
junction file from STAR. Then, the featureCounts function in
Subread version 2.01 was used with fractional counts (–fraction),
where input files were the new splice junction-specific .gtf file, the
super-clusters count file from Corset and the aligned .bam files from
STAR to generate exon counts (Liao et al., 2013). DEU was tested
for with DEXseq version 1.34.1 (Anders et al., 2012). As with tests
for DGE, RIN scores were used but with a centered and scaled mean
around 0 for generalized linear model convergence. The design
formula for DEU included the individual fish, scaled RIN, exon
expression and experimental treatment in interaction with exon
expression. After estimating size factors and dispersions, exon
usage coefficients were estimated by being fit to experimental
treatments. Only exons with differential expression significant
at a q<0.05 were retained for downstream analyses. Similar to
DGE analyses, exons with higher or lower expression in the
thermal stress treatment compared with both the wild and handled
treatments (i.e. |log2-fold change| >0 compared with both wild and
handled) were retained as exhibiting ‘thermal stress-unique’
expression. These steps were performed following guidelines in
the Lace GitHub repository (https://github.com/Oshlack/Lace/wiki/
Example:-Differential-Transcript-Usage-on-a-non-model-organism).
Only GO terms from the Biological Process 2018, Molecular

Function 2018 and Cellular Component 2018 databases with
q<0.05 were retained for further analyses. As with GO terms
represented by DGE, Revigo was used to explore non-redundant
GO terms for exons that showed thermal stress-specific expression
(Supek et al., 2011).

Gene expression–splicing interactions
To explicitly evaluate our hypothesis that alternative splicing is an
important mechanism used by redside dace responding to a thermal
challenge, we focused on splicing factors uniquely upregulated
(DGE log2-fold changes >0 when compared with both other groups)
in fish in the thermal stress treatment. Using the STRING version
11.0 database (Szklarczyk et al., 2019), we analyzed genes in
molecular pathways with the splicing factors identified previously
using the Danio rerio database. Here, genes with significant DEU
were identified as possibly important for the thermal stress response.

RESULTS
Transcriptome assembly and annotation
Trinity assembled unaligned reads into a transcriptome of 714,933
unique transcripts in 429,016 unique genes with a BUSCO score for

transcriptome completeness of 89.8%. Of these putative transcripts
and genes, 155,547 transcripts representing 59,755 genes were
annotated using Trinotate and associated programs after filtering for
E-values <1×10−6 and bit scores >50. Corset clustered transcripts
from Trinity into 83,217 super-clusters representing 143,841 clusters.

Differential gene expression
Of the 143,841 clusters from Corset irrespective of available
annotations, count data were observed for 46,140 clusters in any
single individual. Between the thermal stress group and handled
control, 1531 clusters showed significant DGE, 786 with relatively
higher expression in thermal stress and 745 with relatively lower
expression in thermal stress compared with the handled control
(Table 1). Between the thermal stress and wild groups, 6770 clusters
showed significant DGE, 3992 with relatively higher expression in
thermal stress and 2778 with lower expression in thermal stress
compared with the wild group. For clusters with expression unique
to thermal stress, 579 showed higher expression compared with the
two other groups, while 559 showed lower expression compared
with the two other groups (Fig. 2). Multidimensional scaling with
all clusters and a heatmap of counts per million for each of 1138
clusters showing significant DGE unique to the thermal stress
treatment (579 positive, 559 negative; q<0.05) revealed a gradient in
expression response from the wild group to the handled control, and
the thermal stress group (Fig. 2). Although the fish ‘wild 3’ was an
outlier in mRNA abundance profile and had the lowest RIN score
out of all individuals of 7.1 (Fig. 2; Table S1), its removal fromDGE

Table 1. Summary table of pairwise results for differential gene
expression among three experimental treatments

Wild versus
Handled

Wild versus
CTmax

CTmax versus
Handled

Number of significant DGE
clusters overall

2362 6770 1531

Number of significant
positive DGE clusters

578 2778 786

Number of significant
negative DGE clusters

1784 3992 745

Positive DGE genes 263 1478 328
Negative DGE genes 670 1682 218
Positive DGE Biological
Process GO terms

0 98 27

Positive DGE Molecular
Component GO terms

0 5 12

Positive DGE Cellular
Component GO terms

0 40 0

Negative DGE Biological
Process GO terms

60 211 0

Negative DGE Molecular
Component GO terms

32 43 0

Negative DGE Cellular
Component GO terms

1 1 0

Clusters (∼transcripts) were identified and quantified with Corset, and
differential gene expression (DGE) was analyzed with edgeR. EnrichR was
used to summarize annotated clusters under different pairwise comparisons
into gene ontology (GO) terms, among three databases: Biological Process
2018, Molecular Function 2018 and Cellular Component 2018. Counts of
clusters associated with known genes are reported as genes. Positive and
negative expression for clusters and GO terms are relative to the pairwise
comparison used; positive expression represents clusters higher in the first
treatment of a comparison, whereas negative expression represents clusters
higher in the second treatment of a comparison. The thermal stress treatment is
abbreviated asCTmax. A total ofN=30 individuals were used for this experiment
(n=10 per treatment).
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analyses did not qualitatively affect downstream results. Rather than
introduce bias by removing this outlier individual, it was retained
for all analyses.

Among annotated clusters showing significant DGE, 328 genes
were identified as showing relatively higher expression in thermal
stress compared with the handled control, and 218 genes lower for
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Fig. 2. Differential gene expression in response to thermal stress. (A) Visualization of cluster expression as implemented by a multidimensional scaling
(MDS) plot using edgeR, where distances between plots are approximations of log2-fold changes between samples. Input data are cluster (∼transcript)
expression counts filtered for any expression among any of the N=30 individuals in the experiment. Individual labels are composed of the experimental treatment
or control [thermally stressed (abbreviated as CTmax), handled or wild, n=10 each] and the individual’s identifying number. (B) Heatmap of counts per million for
each of 1138 clusters showing significant differential gene expression unique to the thermal stress treatment (579 positive, 559 negative; q<0.05). Each cluster
included in this plot either shows higher expression in the thermal stress treatment compared with both the wild and handled controls, or lower expression in the
thermal stress treatment compared with both controls. Individuals are grouped by experimental treatment, and numbers identifying individuals within each
treatment are on the x-axis.
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the thermal stress group (Table 1). Between the thermal stress
treatment and handled control, 39 GO terms were identified from
genes showing higher expression for thermal stress (no GO terms
were found for genes with higher expression in the handled control).
Between the thermal stress and wild groups of fish, 1682 genes were
higher for thermal stress (1478 higher for wild group) (Table 1).
Between the thermal stress treatment and wild group, 256 GO terms
were identified from genes showing higher expression in thermal
stress, while 143 genes had higher expression in wild fish.
For genes that showed thermal stress-specific expression (i.e.

|log2-fold changes| >0 compared with both other groups for thermal
stress-specific expression, respectively), 579 were identified as
showing higher expression in thermal stress compared with both
controls (216 annotated clusters), and 559 showed lower expression
in thermal stress compared with both controls (103 annotated
clusters). For GO terms related to genes specific to thermal stress, 32
GO terms were identified among genes with positive expression (21
Biological Process terms, 11 Molecular Function terms), whereas
no GO terms were identified for genes with negative expression
(Fig. S1). Using Revigo with the thermal stress-specific GO terms,
12 Biological Process GO terms and eight Molecular Function GO
terms were retained for visualization (Fig. S1). With the 1138 total
clusters identified as unique to thermal stress (775 annotated), we
identified 37 Biological Process terms, 30 Molecular Function

terms and one Cellular Component GO term. With Revigo, 25
Biological Process terms, 21 Molecular Function terms and one
Cellular Component non-redundant GO term were retained for
visualization (Fig. 3). The GO terms regulation of transcription,
DNA-templated (GO:0006355), RNA binding (GO:0003723) and
RNA polymerase II transcription regulator complex (GO:0090575)
were the terms with the greatest number of clusters in each of the
enrichment databases searched (Kuleshov et al., 2016). Also
prominent were terms related to unfolded proteins and protein
turnover, such as response to unfolded protein (GO:0006986),
regulation of protein ubiquitination (GO:0031396), chaperone
cofactor-dependent protein refolding (GO:0051085) and ubiquitin
protein ligase binding (GO:0031625).

Early response genes
Each of jun, jun-B, jun-D, ier2, myc, c-Fos and fosB showed higher
expression in the thermal stress treatment than in the wild group,
while only jun showed higher expression in the thermal stress
treatment compared with the handled control (Fig. 4).

Differential exon usage
Among 143,841 clusters in the data, 31,042 had detectable exons
and 4943 of these clusters (∼16%) had at least one exon that showed
significant DEU between any two experimental treatments
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Fig. 3. Non-redundant gene ontology (GO) terms representing clusters (∼transcripts) that showed differential expression (|log2-fold change|>0) in the
thermal stress treatment compared with both the handled and wild groups.Clusters were first identified as showing differential expression with edgeR, then
these GO terms were called using a list of annotated genes input into enrichR. Non-redundant terms were identified with Revigo and visualized here. All terms are
significant at a q<0.05. Enrichment databases searchedwere the Biological Process 2018 (blue), Molecular Function 2018 (yellow) andCellular Component 2018
(red). Number of clusters represents the number of genes annotated to clusters summarized within GO terms. A total of N=30 individuals were used for this
experiment (n=10 per treatment).
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(Table 2). These clusters with significant DEU were composed of
284,631 exons total, of which 10,314 exons showed significant
DEU between any two experimental treatments. In the thermal

stress experimental treatment with respect to both the handled and
wild treatments, 88,031 exons in 3230 clusters had higher
expression (exon base mean±s.d. 34.6±132.21 counts across
samples in each exon normalized by sequencing depth), while
76,307 exons in 2530 clusters had lower expression (exon base
mean 70.84±208.98 counts).

Exons that showed higher expression in the thermal stress
treatment compared with both controls were represented by 1688
annotated genes, summarized in 72 GO terms (46 Biological
Process, 13 Molecular Function and 12 Cellular Component GO
terms). Using Revigo with annotated clusters containing exons
showing higher thermal stress-specific expression, 25 Biological
Process GO terms, nine Molecular Function GO terms and 11
Cellular Component GO terms were retained for visualization
(Fig. S2). For exons with lower expression in the thermal stress
compared with both controls, 1170 genes were annotated,
summarized by six GO terms (one Biological Process and five
Molecular Function GO terms) (Fig. S2). Using Revigo, all six GO
terms representing exons with lower expression in thermal stress
were retained for visualization (Fig. S2). Among GO terms
represented for overall thermal stress-specific differential exon
usage (Fig. 5), gene expression (GO:0010467), transcription from
RNA polymerase II promoter (GO:0006366) and transcription,
DNA templated (GO:0006351) were present. Terms directly related
to metabolism were: rRNA metabolic process (GO:0016072), RNA
metabolic process (GO:0016070), regulation of primary metabolic
process (GO:0080090), carboxylic acid metabolic process
(GO:0019752) and creatine metabolic process (GO:0006600).
Mitochondria-related enrichment terms of mitochondrion
organization (GO:0007005), mitochondrion (GO:0005739) and
mitochondrial inner membrane (GO:0005743) were also prominent.

Gene expression–splicing dynamics
One splicing factor, pre-mRNA-splicing factor 38B (prpf38b), was
upregulated in the thermal stress treatment compared with both the
wild and handled groups (0.58 log2-fold change compared with
wild, 0.70 log2-fold change compared with handled) (Fig. S3). The
gene prpf38b is associated with several genes that showed DEU
between treatments: splicing regulatory glutamine/lysine-rich
protein 1 (srek1), regulator of chromosome condensation (rcc1),
pinin ( pnn), RNA-binding protein 25 (rbm25) and RNA-binding
protein 39 (rbm39) (Fig. 6; Fig. S3). The last gene, rbm39, is
a transcriptional coactivator of transcription factor AP-1 ( jun),
which showed higher expression in the thermal stress treatment
compared with both other treatments (2.64 log2-fold change
compared with wild, 1.87 log2-fold change compared with
handled) (Fig. 4).

DISCUSSION
Our data show that alternative splicing and gene expression may be
complementary and interacting mechanisms used to mount a
cellular response to thermal stress. We identified several hundred
differentially transcribed genes unique to thermal stress, and these
presumably represent the molecular mechanisms that redside dace
use to respond to acute thermal stress. We also identified alternative
splicing-based responses to thermal stress that may provide a
complementary mechanism for an acute thermal stress response.
Consistent with the hypothesis that DGE influences DEU, we
identified differentially transcribed splicing factors unique to
thermal stress. A total of 1138 clusters (∼transcripts) showed
significant DGE unique to the thermal stress treatment (579
positive, 559 negative). Moreover, 88,031 exons in 3230 clusters
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Fig. 4. Expression of seven early response genes that are generally
associated with an acute stress response. Log2-fold changes (LFCs) are
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comparisons are not shown. Individual points represent individual fish within
each experimental treatment. The thermal stress treatment is abbreviated as
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proto-oncogene c-Fos, and fosB is metallothiol transferase FosB.
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had higher expression in the thermal stress treatment compared with
both other groups, while 76,307 exons in 2530 clusters had lower
expression. One splicing factor ( prpf38b) that was upregulated in
the thermal stress-challenged fish, and its increased expression was
concurrent with DEU in downstream genes, representing a possible
stress response pathway that incorporates both alternative splicing
and gene expression.

Gene expression
By comparing thermal stress-challenged redside dace with handled
and wild groups, we were able to identify gene expression unique to
thermal stress. An observed gradient of expression responses was
consistent with the handled control representing an intermediate,
general stress response between the thermal stress and wild fish
groups. Meanwhile, the thermal stress treatment represented a
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Fig. 5. Non-redundant GO terms representing exons in clusters (∼transcripts) that showed differential exon usage (|log2-fold change|>0) in the thermal
stress treatment compared with both the handled and wild groups.Clusters were first identified as showing differential exon usagewith DEXSeq, then these
GO terms were called using a list of annotated genes input into enrichR. Non-redundant terms were identified with Revigo and visualized here. All terms are
significant at a q<0.05. Enrichment databases searchedwere the Biological Process 2018 (blue), Molecular Function 2018 (yellow) andCellular Component 2018
(red). Number of clusters represents the number of genes annotated to clusters summarized within GO terms. A total of N=30 individuals were used for this
experiment (n=10 per treatment).

Table 2. Summary table of pairwise results for differential exon usage among three experimental treatments, with a focus on exons unique to the
CTmax treatment

Overall DEU Positive CTmax DEU Negative CTmax DEU

Total number of clusters 4943 3230 2530
Number of exons 10,314 88,031 76,307
Number of genes 3136 2125 1471
Number of Biological Process GO terms 56 46 1
Number of Molecular Function GO terms 5 13 5
Number of Cellular Component GO terms 23 12 0

Clusters (∼transcripts) were identified and quantified with Corset, and differential exon usage (DEU) was analyzed with DEXSeq. DEXSeq was used to
summarize annotated clusters under different pairwise comparisons into gene ontology (GO) terms, among three databases: Biological Process 2018, Molecular
Function 2018 and Cellular Component 2018. Counts of clusters associated with known genes are reported as genes. Positive and negative expression for
clusters and GO terms are with respect to both controls; positive CTmax DEU represents clusters with exons showing higher expression in the CTmax treatment
compared with both controls, while negative CTmax DEU represents exons showing lower expression in the CTmax treatment compared with both controls. A total
of N=30 individuals were used for this experiment (n=10 per treatment).
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combined thermal and handling stress response, while the wild
treatment represented a transcriptional state as close to baseline as
was feasible for an experiment conducted in the field.
As a positive control, we used a set of seven early response genes

( jun, jun-B, jun-D, ier2, myc, c-Fos and fosB) that would be
expected to show a stress response to verify that whole-organism
acute stress was reflected in transcriptomic responses. This panel of
genes was more highly expressed in the thermal stress treatment
relative to the wild group. None of the genes in this panel except
jun showed differential expression between fish in the thermal stress
treatment and handled control, indicating their role in a general
stress response associated with the experimental treatments as
opposed to a temperature-specific stress response. Nevertheless,
their higher expression in thermal stress compared with the wild
group (in addition to handled compared with wild) confirms that a
stress response associated with handling, transport and confinement
was reflected in gene expression. Because this panel of genes
establishes that thermal and handling stressors were reflected in the
transcriptomic response, thermal stress-specific genes likely
represent a temperature-specific stress response when compared
with both other groups.
Transcription regulation was prominent among genes differentially

expressed in the thermal stress fish compared with both other groups,
indicating that these genes likely play a role in coping with an acute
thermal challenge.While the rate-limiting step for protein synthesis is
often the initiation of translation (Sonenberg and Hinnebusch, 2009;
Spriggs et al., 2010), transcription regulation is another key element
of the stress response (De Nadal et al., 2011). An accumulation of
unfolded proteins is thought to induce a heat shock protein response
(reviewed in Richter et al., 2010), and the observed enrichment terms
response to unfolded protein (GO:0006986), regulation of protein
ubiquitination (GO:0031396), chaperone cofactor-dependent protein
refolding (GO:0051085) and ubiquitin protein ligase binding
(GO:0031625) were consistent with this model. Therefore, the
redside dace challenged by an acute thermal stressor exhibited a

‘classic’ acute heat shock response as demonstrated by the multiple
enrichment terms consistent with acute stress responses in the
literature.

One concern with CTmax methodology is that it is based on rapid
warming, which may not induce the same molecular responses that
slower warming would in wild fish (Åsheim et al., 2020). However,
in zebrafish (D. rerio) slow warming was found to share underlying
physiological mechanisms with rapid warming, evidence that
CTmax induces molecular responses with consistencies across
short and ecologically relevant longer time scales (Åsheim et al.,
2020). With a foundation in the conserved heat shock response
among eukaryotes (Richter et al., 2010), consistency between slow
and rapid warming responses in fish (Åsheim et al., 2020), and the
empirical data presented in this study, the thermal stress-specific
genes identified here are one mechanism of the transcriptomic
response to acute thermal stress in the redside dace.

Alternative splicing
Given the broad importance of splicing in fishes and other organisms
(Chaudhary et al., 2019; De Nadal et al., 2011; Healy and Schulte,
2019; Kornblihtt et al., 2013; Laloum et al., 2018; Li et al., 2020;
Salisbury et al., 2021; Tan et al., 2019; Thorstensen et al., 2021; Xia
et al., 2018; Zhang et al., 2019), we hypothesized that alternative
splicing is an important component of the transcriptome response to
thermal stress in redside dace. Therefore, we analyzed alternative
splicing (measured by differential exon usage) for its possible roles in
the acute stress response and interactions with gene expression.
Although splicing may expand the proteome far beyond the number
of genes otherwise present in eukaryotic genomes (Nilsen and
Graveley, 2010), an important caveat is that alternative splicing does
not necessarily change protein diversity in a cell (Chaudhary et al.,
2019; Tress et al., 2017). The functional effects of splicing patterns
identified with mRNA sequencing, as in the present study, cannot be
directly inferred. Instead, we identified enrichment terms in spliced
genes at the transcriptome level.
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Rbm25a

Rbm39a

Rbm25

Srek1
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Fig. 6. Predicted associations for Pfpf38b using the String v11.0
database. The width of lines between proteins represents confidence in
the interaction, and only proteins of high confidence (>0.700) are
included in this figure. The red node, Prpf38b, is the query protein against
the Danio rerio database. In bold are proteins associated with Prpf38b
that showed evidence of alternative splicing via differential exon usage.
A total of N=30 individuals were used for this experiment (n=10 per
treatment).
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Regulation of gene expression was a prominent function among
enrichment terms identified in genes showing alternative splicing in
response to thermal stress. These enrichment terms are consistent
with the roles of both gene expression regulation in response to
stress, such as heat (De Nadal et al., 2011), and splicing in
transcription regulation more generally (Smith et al., 1989). Also
prominent were metabolism-related enrichment terms among genes
showing DEU. Alternative splicing is one mechanism that regulates
cellular metabolism, such as by splicing factors being targets of
metabolic stress (Biamonti et al., 2018). Energy utilization was
found to change in response to warming acclimation in fish, with
decreased aerobic scope but increased energy utilization efficiency
(Nyboer and Chapman, 2017; Zeng et al., 2010). Therefore,
alternative splicing may represent a mechanism underlying energy
use responses to environmental changes in redside dace by changing
the transcribed mRNA isoforms and, therefore, proteomic diversity
(Singh and Ahi, 2022). Consistent with this role of splicing in
energy use, several mitochondria enrichment terms were significant
among genes responding to thermal stress. Cellular mitochondrial
content has been linked to gene expression and splicing variability
(Guantes et al., 2015), and nucleus-encoded splicing machinery
may splice mtRNA in humans (Herai et al., 2017). Although
connections between splicing, metabolism and mitochondria are
less well characterized in fishes, these processes may play important
roles in the response to increasing temperatures.

Gene expression and alternative splicing
One of our main goals was to test the hypothesis that there are direct
and interacting links between patterns of alternative splicing
and DGE in response to thermal stress. To do this, we carefully
searched for splicing factors among the genes that were found to
be differentially expressed in thermally stressed fish relative to both
other groups. One splicing factor, prpf38b, fitted those criteria.
Because protein abundance and mRNA levels are often correlated
(Buccitelli and Selbach, 2020), and even small differences in
pathway intermediates can lead to large changes in pathway flux
(e.g. Hochachka and Somero, 2002), the small log2-fold change
values we measured may be biologically important.
The splicing factor prpf38b may influence two important genes

that are part of the thermal stress response. The gene rbm39 was
associated with prpf38b by co-expression in the STRING v11
database (Szklarczyk et al., 2019), and showed DEU in response
to thermal stress in our experiment. Furthermore, rbm39 was
differentially expressed in one of two thermally distinct populations
of tambaqui (Colossoma macropomum) and is thought to play a role
in local adaptation to thermal conditions (Fé-Gonçalves et al.,
2020). In spotted seabass (Lateolabrax maculatus), rbm39 was
identified as a differentially expressed transcript in salt water versus
fresh water (Tian et al., 2019), consistent with the DEU identified in
the present study. Among other roles, rbm39 is a transcriptional
coactivator for Jun/AP-1 (Jung et al., 2002). This role may be
significant for the redside dace thermal stress response because jun
was more abundant in the thermal stress treatment relative to both
other groups. Activation of c-Jun/AP-1 has been implicated in
numerous, sometimes opposing, context-dependent cellular stress
responses (e.g. both inhibition and activation of apoptotic
responses; Leppä and Bohmann, 1999). More broadly, our data
linking prpf38b, rbm39 and jun illustrate how the interplay between
splicing and gene expression may be an essential element of the
redside dace thermal stress response.
Beyond rbm39 and jun specifically, prpf38b has been linked to

the co-expression and direct regulation of numerous other genes

(Ouyang et al., 2021). Therefore, although jun may be one
regulatory element with far-reaching effects for cellular stress
responses, prpf38b may have effects beyond jun as well. As a
splicing factor that was uniquely differentially transcribed in the
thermally stressed group compared with all other splicing factors,
prpf38b may be a key connection between the transcriptional
mechanisms of DGE and alternative splicing. In the present data, the
separate gene expression and splicing analyses present enrichment
term results that are presented in isolation. However, large
interaction networks among genes indicate that splicing and gene
expression rarely operate in isolation (e.g. Ouyang et al., 2021 for
prpf38b; see also Boyle et al., 2017; Davidson, 2010). Therefore,
further connections between the mechanisms likely exist but remain
largely unexplored, possibly because of context-specificity in which
splicing–gene expression interactions occur. Connections between
splicing and gene expression may contribute to whole-organism
stress responses, highlighting a need to study these two mechanisms
in tandem.

Conclusions
Understanding the mechanisms of thermal tolerance, and how these
vary among populations and species, is critical for predicting the
effects of environmental change and of conservation breeding,
translocation and reintroduction programs. Although these
mechanisms are complex and remain poorly understood (Gangloff
and Telemeco, 2018), cellular stress responses have deeply
conserved elements across all organisms (Horne et al., 2014;
Kültz and Somero, 2020). Therefore, elements of the transcriptional
response to thermal stress as studied in redside dace here may be
applied to understanding transcriptional mechanisms in many
fishes. Our data show widespread changes in both gene expression
and alternative splicing related to metabolic and mitochondrial
processes. Consistent with the present transcriptomic data that
implicated a connection between energy use and the thermal stress
response, improved nutrition has previously been shown to increase
thermal tolerance of redside dace (Turko et al., 2020). Several
studies have demonstrated similar patterns of nutrition and thermal
tolerance in other species (Hardison et al., 2021; Lee et al., 2016;
Robinson et al., 2008). We therefore speculate that the energetic
status of fishes may be an important factor that determines their
ability to cope with thermal stress.

There is widespread interest in understanding patterns of inter-
individual and inter-population differences for many imperilled
economically and ecologically important species. For example,
genetically distinct redside dace populations are known to vary in
both thermal tolerance and scope for thermal acclimation (Turko
et al., 2021), but the mechanisms underlying these differences
are unknown. The present study represents the first investigation
of the redside dace transcriptome, and lays the groundwork
for future inter-population studies in the redside dace and other
imperilled species. Following an acute thermal stress, gene
expression revealed a ‘classic’ heat shock response, while
alternative splicing revealed the potential underpinnings of
changes in transcriptional regulation and cellular metabolism.
Moreover, one splicing factor ( prpf38b) was found to be uniquely
upregulated in the thermally stressed group compared with both
others here, which itself has been associated with elements of the
cellular stress response (via jun). Alternative splicing and gene
expression may thus operate in tandem in the transcriptional
response to thermal stress. Therefore, the responses identified here
may be among many context-dependent, biologically important
interactions between alternative splicing and gene expression.
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Fig. S1. Non-redundant gene ontology (GO) terms representing clusters (~transcripts) that

showed higher expression (log2-fold change > 0) in the CTmax experimental treatment 

compared to both the Handle and Wild controls. Clusters were first identified as showing 

differential expression with edgeR, then these GO terms were called using a list of annotated 

genes input into enrichR. Non-redundant terms were identified with Revigo and visualized here. 

All terms are significant at a false discovery rate < 0.05. Enrichment databases searched were the 

Biological Process 2018 (blue), Molecular Function 2018 (yellow), and Cellular Component 

2018 (red). Number of clusters represents the number of genes annotated to clusters summarized 

within GO terms.  
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Fig. S2. Non-redundant gene ontology (GO) terms representing exons in clusters (~transcripts) that 

showed higher (log2-fold change > 0) or lower (log2-fold change > 0) expression in the CTmax 

experimental treatment compared to both the Handle and Wild controls. Clusters were first 

identified as showing differential exon usage with DEXSeq, then these GO terms were called using 

a list of annotated genes input into enrichR. Non-redundant terms were identified with Revigo and 

visualized here. All terms are significant at a false discovery rate < 0.05. Enrichment databases 

searched were the Biological Process 2018 (blue), Molecular Function 2018 (yellow), and Cellular 

Component 2018 (red). Number of clusters represents the number of genes annotated to clusters 

summarized within GO terms. The black arrows represent GO terms containing exons with higher 

expression in the CTmax treatment (up arrow) or lower expression in the CTmax treatment (down 

arrow).  
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Fig. S3. Counts per million for pre-mRNA-splicing factor 38B (prpf38b) and differential exon usage 

for RNA-binding protein 39 (rbm39), RNA-binding protein 25 (rbm25), splicing regulatory 

glutamine/lysine-rich protein 1 (srek1), pinin (PNN), and regulator of chromosome condensation 

(rcc1). The gene prpf38b showed differential expression higher in the CTmax treatment compared to 

both controls (0.58 log2-fold change (LFC) higher than Wild, q = 1.95x10-2, 0.70 LFC higher than 

Handle, q = 1.71x10-2). Each of gene in this plot had exons with differential expression among the 

three experimental groups, possibly because of regulatory action by prpf38b (see Figure 6). Of note is 

rbm39, which acts as a transcriptional coactivator for JUN/AP-1, among other genes (see Figure 4).  
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Table S1. CTmax, number of raw reads sequenced, number of reads remaining after trimming, 

RNA integrity scores, mapping rates with Salmon, and uniquely mapped reads with STAR for 

redside dace (Clinostomus elongatus).  

Sample 

Identificat

ion 

CTm

ax 

°C 

Number of 

Raw Reads 

Number of 

Trimmed 

Reads 

RNA 

Integrity 

Score 

Salmon 

Mapping 

Rate % 

STAR Uniquely 

Mapped Reads 

% 

CTmax1 33.1 39,256,958 39,070,816 8.7 97.26 63.29 

CTmax2 34.7 48,152,261 47,912,254 8.5 97.36 62.86 

CTmax3 34.8 49,820,723 49,463,131 7.7 97.28 60.29 

CTmax4 34.8 46,370,991 45,959,602 8.8 97.32 61.97 

CTmax5 35.1 54,438,330 53,790,909 9.4 97.51 59.76 

CTmax6 33.7 55,036,633 54,559,223 10.0 97.56 60.43 

CTmax7 33.7 67,635,235 67,190,887 8.7 97.41 60.70 

CTmax8 33.9 53,400,964 53,020,828 9.3 97.47 60.90 

CTmax9 34 35,217,633 34,931,096 9.6 97.49 63.79 

CTmax10 34.2 55,010,043 54,531,683 8.8 97.41 61.50 

Handle1 - 47,249,235 47,051,990 9.8 97.70 59.34 

Handle2 - 48,555,398 47,486,283 7.5 97.29 62.49 

Handle3 - 57,165,012 56,807,704 9.7 97.80 63.06 

Handle4 - 41,006,689 39,038,901 7.9 96.86 60.18 

Handle5 - 53,097,480 52,142,889 8.6 97.67 59.64 

Handle6 - 69,005,168 68,107,886 8.6 97.27 63.17 

Handle7 - 38,172,117 37,495,080 8.6 97.38 61.07 

Handle8 - 42,283,580 41,881,594 9.4 97.47 62.32 

Handle9 - 58,386,510 57,540,607 8.9 97.24 63.39 

Handle10 - 50,177,982 49,723,799 9.3 97.55 59.62 

Wild1 - 52,089,483 51,605,698 8.8 97.31 59.46 

Wild2 - 55,994,211 55,530,501 9.0 97.51 58.45 

Wild3 - 40,560,761 38,784,153 7.1 95.81 61.33 

Wild4 - 49,197,975 48,774,973 9.1 97.54 60.80 

Wild5 - 36,636,257 35,981,121 8.7 97.43 61.01 

Wild6 - 56,898,603 56,260,878 8.0 97.47 58.35 

Wild7 - 47,397,177 47,112,774 8.9 97.51 62.12 

Wild8 - 66,069,975 65,401,726 8.7 97.48 58.53 

Wild9 - 36,825,441 36,460,064 9.4 97.57 61.96 

Wild10 - 65,275,729 64,667,339 9.4 97.60 59.89 
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