ORIGINAL PAPER

Evolution of mating systems and sexual size dimorphism in North American cyprinids

M. Pyron · T. E. Pitcher · S. J. Jacquemin

Received: 17 October 2012 / Revised: 30 January 2013 / Accepted: 31 January 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract Mating systems evolve with sexual size dimorphism (SSD) in many animals. Mating systems with males larger than females occur when males compete for female access or guard territories, while mating systems with group mating tend to occur in species where females are the same size or larger than males. In addition to variation in SSD with mating system, sperm competition varies among mating systems in predictable patterns. We examined the evolution of mating systems with SSD and testes mass in 111 North American Cyprinidae fishes using phylogenetic comparative methods. Our results demonstrate that the evolution of mating systems in Cyprinidae fishes is from ancestral taxa that are group spawners with females the same size or larger than males to pair spawning systems where males tend to be larger than females. We used an additive model to predict male and female body size from testes mass and mating system. Only mating system varied predictably with SSD. Our results for analyses of hyperallometry (Rensch's rule) were that individual species of Cyprinidae can have hyperallometry for SSD, but the pattern is not present across all taxa.

Keywords Sexual selection · Sexual size dimorphism · Rensch's rule · Comparative phylogenetic analyses

Communicated by J. Frommen

Electronic supplementary material The online version of this article (doi:10.1007/s00265-013-1498-5) contains supplementary material, which is available to authorized users.

M. Pyron (⊠) · S. J. Jacquemin Department of Biology, Aquatic Biology and Fisheries Center, Ball State University, Muncie, IN 47304, USA e-mail: mpyron@bsu.edu

T. E. Pitcher Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4

Introduction

Mating system variation is the result of sexual selection whereby one sex becomes limiting (Emlen and Oring 1977). A result is sexual size dimorphism (SSD) that varies among mating systems with a common pattern of male-biased size allometry and increased male-male competition and/or female mating preferences for larger males (Andersson 1994; Dunn et al. 2001). Cox et al. (2003) suggested that observed SSD occurs through two adaptive hypotheses: (1) the intrasexual selection hypothesis, whereby male-male competition leads to selection for a larger body size, and (2) the fecundity advantage hypothesis, whereby natural selection drives females to have larger bodies in order to produce larger clutch sizes. Similarly, in Cyprinidae fishes, increased male body size is predicted to occur in taxa with mating systems displaying male guarding behavior and/or male territoriality (Pyron 1996). Increased female body size in fishes is usually a selective response to increased fecundity (Parker 1992) and has been correlated with changes in male body size (Young 2005). Consequently, the resulting SDD for any given taxon is the combination of sexual section for males better able to mate guard and defend their territory and natural selection for increased fecundity in females.

Mating system variables that are correlated with SSD include levels of polygyny (Dunn et al. 2001) or territorial guarding (Pyron 1996). Males can obtain increased fitness by reduced investment in gametes and parental care, resulting in an increased number of males available to mate with receptive females (Clutton-Brock 2007). The evolution of SSD can occur through changes in male or female body size, which can be influenced by multiple mechanisms (Webb and Freckleton 2007). Rensch (1960) further defined a pattern of allometry with SSD (Abouheif and Fairbairn 1997; Reeve and Fairbairn 2001; Webb and Freckleton 2007). He predicted positive size allometry (hyperallometry) in taxa where males are larger and negative size allometry (hypoallometry) in taxa where females are the larger sex. Moreover, hyperallometry appears to be more common in large-bodied species, while hypoallometry is more common in small-bodied species (Frýdlová and Frynta 2010). These patterns, now referred to as *Rensch's rule*, have been identified in numerous taxa, including primates (Smith and Cheverud 2002), turtles (Stephens and Wiens 2009), birds (Dale et al. 2007), chameleons (Stuart-Fox 2009), mites (Colwell 2000), and salmonid fishes (Young 2005), and have been the focus of research efforts to identify developmental mechanisms that cause male and female morphology to diverge with sexual maturity (Badyaev 2002; Blanckenhorn et al. 2007).

Mating system diversity among fishes in the Cyprinidae family (Johnston and Page 1992) provides an ideal context for which to test hypotheses related to mating system evolution and co-evolution of mating system characters. Cyprinid mating systems vary from group spawning, in which females are larger than males, to pair spawning, in which males are larger than females (Pyron 1996). Pyron (1996) successfully predicted SSD in 58 cyprinid taxa using mating system variables for probability of sperm competition, male-male context, and male guarding. Our interest is in examining the evolution of SSD and mating systems for a larger number of taxa, including several where natural history information has not been published. Furthermore, we quantify testes mass from museum collections as an estimate of the probability of sperm competition (Parker 1992; Parker and Ball 2005). Although additional spermatozoa traits can influence fertilization success (Beausoleil et al. 2012), our comparative approach only included testes mass as an estimate of sperm production. While Pyron (2000) did not find evidence that testes mass and sexual size dimorphism evolved with mating systems in a comparative analysis of 37 minnow taxa, we tested for similar patterns in a larger diversity of taxa.

Our prediction is that species that are group spawners (many males participate in spawning events) will have female-biased SSD and that species with pair spawning (male guarding and/or male–male competition) will have male-biased SSD. In addition, we expected testes mass to predict the probability of sperm competition, with increased testes mass in species with group-spawning mating systems and males with similar size as females. We examined the evolution of SSD, testes mass, and mating systems using a phylogenetic comparative analysis. An additional goal was to predict mating systems from sexual size dimorphism for species that are lacking published mating system information.

Methods

Testes mass data were obtained from museum specimens, whereby individual fishes were dissected (Pyron 2000). We used only collections that had been preserved for at least 10 years to avoid shrinkage differences (Vervust et al. 2009), and representing the reproductive season of the species (females had ripe ova; males had tubercles), and only mature individuals. All collections were initially preserved in formalin and later, once fixation occurred, stored in alcohol. The standard length (SL) of all individuals was measured to 0.1 mm. Moisture was blotted from testes and bodies and the wet mass was determined to 0.001 g on an electronic balance (testes mass was added to body mass for calculations). Information about mating systems was from published sources or predicted from SSD (Table 1). We categorized mating system into pair spawning or group spawning (Pyron 1996) because details of the mating behavior of most cyprinids are not available. For the taxa where mating system information was unavailable, we used a discriminant function analysis to predict pair spawning or group spawning from SSD. As sexual size dimorphism is a strong predictor of mating systems in cyprinid fishes (Pyron 1996), taxa with SSD scores higher than 0.02 were assigned as pair spawners; all others, as group spawners. SSD was calculated as the difference between log-transformed male standard length and log-transformed female standard length (Pyron 1996). Hormiga et al. (2000) demonstrated a cladistic test for examining the evolution of SSD separately in males and females. Their approach was to reconstruct the ancestral body size for males and females using parsimony to identify the sequence of evolutionary events. We used a similar approach to identify the evolutionary origins and the sequence of changes in SSD for Cyprinidae fishes.

We used comparative phylogenetic methods to control for non-independence for all of our analyses (Garland and Ives 2000; Garland et al. 2005). A composite phylogeny for Cyprinidae taxa was assembled from the molecular hypotheses of Simons et al. (2003), Mayden et al. (2006), Pramuk et al. (2007), Moyer et al. (2009), Bufalino and Mayden (2010), and Schönhuth and Mayden (2010). Male and female mean standard length, testes mass, and mating system score (pair or group spawning) were assigned to each taxon.

We used the PDAP PDTREE (version 1.15; Midford et al. 2002) package in the software Mesquite (version 2.73; Maddison and Maddison 2010) for comparative phylogenetic analyses (other than the additive model described below). Divergence times for all taxa were not known due to limitations in molecular clock and fossil record data; thus, we used constant branch lengths. The body size of males and females, SSD, testes mass, and mating system were reconstructed on the cladogram using parsimony. We visually examined ancestral character changes of male and female body size on cladograms to detect which gender resulted in changes in SSD (Hormiga et al. 2000). This allowed us to examine whether origins for SSD occur simultaneously with changes in body size of males or females, or both. We used Pagel's (1994) maximum likelihood approach in Mesquite (Maddison and Maddison 2010) to test

 Table 1
 Taxa, testes mass, mean SL of males and females, log-transformed difference in SL of males and females, spawning mode, source of material (abbreviations from Sabaj Pérez 2010), mean of testes mass to body mass ratio, and the source of mating system information

Species	Testes mass (g)	Male SL (mm)	Female SL (mm)	Log male SL–female SL	Spawning mode	Source of material	Testes/ body mass	Mating system source	
Agosia chrysogaster	0.034	55	57.7	-0.021	Group	INHS	0.007	Pyron (2000)	
Campostoma anomalum	0.336	80.2	80.9	-0.004	Group	INHS	0.018	Pyron (2000)	
Campostoma oligolepis	0.083	73.1	85.2	-0.067	Group	INHS	0.009	Johnston and Page (1992)	
Campostoma ornatum	0.014	57	47.5	0.079	Group	INHS	0.004	Johnston and Page (1992)	
Clinostomus funduloides	0.083	55.6	57	-0.011	Group	INHS	0.018	Pyron (2000)	
Codoma ornata	0.031	5.3	4.5	0.071	Pair	UMMZ	0.011	Pyron (2000)	
Couesius plumbeus	0.087	8.5	9.4	-0.044	Group	UMMZ	0.010	Pyron (2000)	
Cyprinella camura	0.042	66.7	65.9	0.005	Pair	INHS	0.007	Johnston and Page (1992)	
Cyprinella galactura	0.061	81.5	71.8	0.055	Pair	INHS	0.005	Pyron (2000)	
Cyprinella lutrensis	0.02	53.8	44.6	0.081	Group	INHS	0.006	Pyron (2000)	
Cyprinella spiloptera	0.035	86.2	70.1	0.090	Pair	OMNH	0.008	Pyron (2000)	
Cyprinella venusta	0.055	59	48.7	0.083	Group	OMNH	0.012	Pyron (2000)	
Cyprinella whipplei	0.092	49	38	0.110	Group	INHS	0.011	Pyron (2000)	
Dionda episcopa	0.046	50.5	46.7	0.034	Group	UMMZ	0.020	Pyron (2000)	
Erimystax dissimilis	0.04	78.8	67	0.070	Pair	INHS	0.007	Same as <i>Erimystax monachus</i> (Jenkins and Burkhead 1993)	
Exoglosssum maxilingua	0.046	8	6.4	0.097	Pair	UMMZ	0.004	Pyron (2000)	
Gila atraria	0.29	8.2	9.6	-0.068	Group	UMMZ	0.023	Pyron (2000)	
Gila coerulea	0.2	85	113	-0.124	Group	INHS	0.012	Johnston and Page (1992)	
Hemitremia flammea	0.05	46.8	49.2	-0.022	Group	INHS	0.028	Predicted	
Hesperoleucas symmetricus	0.024	46	56.4	-0.089	Group	INHS	0.016	Mayden and Simons (2002)	
Hybognathus hankinsoni	0.011	38.4	43.1	-0.050	Group	INHS	0.013	Lane et al. (1996)	
Hybognathus nuchalis	0.012	66	66.8	-0.005	Group	INHS	0.003	Mayden and Simons (2002)	
Hybognathus placitus	0.025	54.4	54.9	-0.004	Group	INHS	0.007	Pyron (2000)	
Hybognathus regius	0.023	58.5	62.5	-0.029	Group	INHS	0.008	Lane et al. (1996)	
Hybopsis amblops	0.006	51.1	64.7	-0.102	Group	INHS	0.003	Pyron (2000)	
Hybopsis hypsinotus	0.024	58	50.5	0.060	Group	INHS	0.007	Johnston and Page (1992)	
Hybopsis rubifrons	0.026	61.8	60.1	0.012	Pair	INHS	0.007	Johnston and Page (1992)	
Lavinia exilicauda	0.117	64.5	68	-0.023	Group	INHS	0.022	Johnston and Page (1992)	
Lepidomeda vittata	0.06	96	96	0.000	Group	Blinn et al. (1998)	0.045	Blinn et al. (1998)	
Luxilus albeolus	0.16	103	67	0.187	Pair	INHS	0.007	Johnston and Page (1992)	
Luxilus cardinalis	0.031	67.2	63.3	0.026	Pair	INHS	0.006	Johnston and Page (1992)	
Luxilus chrysocephalus	0.32	118.9	78.6	0.180	Group	INHS	0.009	Johnston and Page (1992)	
Luxilus coccogenis	0.004	55.1	61.8	-0.050	Group	INHS	0.003	Johnston and Page (1992)	
Luxilus cornutus	0.07	77	60	0.108	Pair	OMNH	0.004	Pyron (2000)	
Luxilus pilsbryi	0.01	55.9	67.2	-0.080	Group	INHS	0.005	Johnston and Page (1992)	
Luxilus zonistius	0.07	76.3	66	0.063	Pair	INHS	0.009	Johnston and Page (1992)	
Lythrurus ardens	0.02	65.4	54.9	0.076	Group	INHS	0.006	Johnston and Page (1992)	
Lythrurus bellus	0.008	46.7	40	0.067	Group	INHS	0.007	Johnston and Page (1992)	
Lythrurus fasciolaris	0.014	50.4	49	0.012	Pair	INHS	0.007	Johnston and Page (1992)	
Lythrurus fumeus	0.012	44.4	44.8	-0.004	Pair	INHS	0.012	Johnston and Page (1992)	
Lythrurus matutinus	0.01	51.1	48.1	0.026	Pair	INHS	0.007	Johnston and Page (1992)	
Lythrurus umbratilis	0.009	47.1	41.1	0.059	Group	INHS	0.005	Pyron (2000)	
Macrhybopsis storeriana	0.052	91.1	100.5	-0.043	Group	INHS	0.006	Lane et al. (1996)	
Margariscus margarita	0.004	67.9	72.7	-0.030	Pair	UWZM	0.001	Pyron (2000)	
Nocomis asper	0.231	100.33	105.1	-0.020	Pair	INHS	0.007	Maurakis and Roston (1998)	

Nocomis biguitatus 0.319 122 75.2 0.210 Pair UMMZ 0.010 Pyron (2000) Nacomis incropoga 0.013 138 111 0.095 Pair Jenkins and Burkhsad (1993) 0.003 Maurakis et al. (1991) Notemigenes crysolencer 0.06 57 60 -0.022 Group INITS 0.003 Maurakis et al. (1991) Notropis anabilis 0.017 51.3 46.3 0.045 Pair INHS 0.008 Predicted Notropis anabilis 0.013 63 69 -0.005 Pair INHS 0.008 Suttens and Boschang (1990) Notropis anommas 0.016 52.5 57.1 -0.026 Group INHS 0.008 Predicted Notropis burnit 0.013 63 69 -0.040 Group INHS 0.000 Pair INHS 0.000 Paron (2000) Notropis burnit 0.013 43 48.7 -0.008 Group INHS 0.000 Paron (2000) Notropis burnit 0.014<	Species	Testes mass (g)	Male SL (mm)	Female SL (mm)	Log male SL–female SL	Spawning mode	Source of material	Testes/ body mass	Mating system source
Nocomis incropogori0.80516090.60.247PairINRS0.009WallingWallingNocomis micropogori0.0131381110.995PairInRis0.003Maurakis et al. (1991)Noronjis albizonanis0.00747.949-0.010GroupINRS0.007PredictedNoronjis anabilis0.01751.346.30.445PairINRS0.008PredictedNoronjis anabilis0.01752.57.10.036GroupINRS0.008Suttas and Boschung (1990) Tori IntBos and Walce (142)Noronjis anamenkilis0.0134248-0.040GroupOMNH0.014Pyron (2000)Noronjis tarbierninoides0.0134248-0.040GroupOMNH0.014Pyron (2000)Noronjis bairnans0.00441.640.60.011GroupOMNH0.014Pyron (2000)Noronjis bairnans0.00441.640.60.011GroupNIRS0.009Pyron (2000)Noronjis bachada0.00933.335.5-0.003GroupNIRS0.004Jatrastrastrastrastrastrastrastrastrastra	Nocomis biguttatus	0.319	122	75.2	0.210	Pair	UMMZ	0.010	Pyron (2000)
Nocenic micropagon0.0131.311.110.095Pair Pair Methode (1993)0.003Maurakis et al (1991)Notenjos andinomas0.00747.949-0.010GroupINIIS0.0210.023Notension and Page (1992)Notropis andinita0.00747.949-0.010GroupINIIS0.008PredictedNotropis anomphilas0.00852.557.1-0.026GroupINIIS0.003Johnston and Page (1992)Notropis anoemes0.00163.549.30.082GroupOMNI0.014Pyron (2000)Notropis danomas0.01659.549.30.082GroupOMNI0.021Pyron (2000)Notropis bairdi0.0341.640.0GroupOMNI0.021Pyron (2000)Notropis bairdi0.0251.6-0.021GroupINIIS0.009Pyron (2000)Notropis bachanam0.02333.5-0.003GroupINIIS0.010Horiston and Page (1992)Notropis bachanami0.00033.335.5-0.002GroupINIIS0.011Pyron (2000)Notropis bachanami0.00033.335.6-0.021GroupINIIS0.011Pyron (2000)Notropis bachanami0.00033.335.6-0.022GroupINIIS0.011PortictedNotropis bachanami0.00045.446.6-0.002GroupINIIS0.011PortictedNotropis bachanami0	Nocomis leptocephalus	0.805	160	90.6	0.247	Pair	INHS	0.009	Wallin (1992)
Noterrigioumic crysolvectace 0.007 77.9 90 -0.010 Group INIS 0.023 Jolinsch and Page (1992) Notropis annenphilus 0.007 7.5.3 46.3 0.045 Pair INIS 0.005 Predicted Notropis annenphilus 0.005 51.3 46.3 0.045 Pair INIS 0.005 Predicted Notropis annenphilus 0.001 52.5 57.1 -0.036 Group INIS 0.003 Johnson and Page (1992) Notropis anrennus 0.013 63 69 -0.040 Group OMNI 0.014 Pyrun (2000) Notropis barind 0.03 42. 48 -0.058 Group INIS 0.064 Pyrun (2000) Notropis barind 0.02 54.6 0.670 INIS 0.064 Pyrun (2000) Notropis barind 0.004 33.3 3.55 -0.021 Group INIS 0.061 Pyrun (2000) Notropis barind 0.000 3.99 2.66 -0.022 </td <td>Nocomis micropogon</td> <td>0.013</td> <td>138</td> <td>111</td> <td>0.095</td> <td>Pair</td> <td>Jenkins and Burkhead (1993)</td> <td>0.003</td> <td>Maurakis et al. (1991)</td>	Nocomis micropogon	0.013	138	111	0.095	Pair	Jenkins and Burkhead (1993)	0.003	Maurakis et al. (1991)
Natorpic alticanatus0.0077.134.9-0.010GroupINIS0.007PredictedNotropic annophilus0.00430.0151.30.450.005PairINIS0.008PredictedNotropic annophilus0.00152.557.1-0.036GroupINIS0.003Johnston and Pace (192)Notropic annomus0.01659.549.30.082PairINIS0.001Johnston and Pace (192)Notropic barberinoides0.0134248-0.058GroupOMNH0.014Pyron (2000)Notropic barberinoides0.01441.640.6-0.013GroupINIS0.004Pyron (2000)Notropic barberinatus0.0025447.7-0.006GroupINIS0.004Pyron (2000)Notropic barberinatus0.0025447.7-0.006GroupINIS0.004Pyron (2000)Notropic barberinatus0.0033.33.5-0.003GroupINIS0.004PordictedNotropic barberinatus0.0043.33.5-0.020GroupINIS0.011PredictedNotropic barberinatus0.00444.646.6-0.021GroupINIS0.011PredictedNotropic barberinatus0.00444.5-0.020GroupINIS0.016Fletcher (199)Notropic barberinatus0.00444.5-0.021GroupINIS0.016Fletcher (199)Notropic barberinatus <t< td=""><td>Notemigonus crysoleucas</td><td>0.06</td><td>57</td><td>60</td><td>-0.022</td><td>Group</td><td>INHS</td><td>0.023</td><td>Johnston and Page (1992)</td></t<>	Notemigonus crysoleucas	0.06	57	60	-0.022	Group	INHS	0.023	Johnston and Page (1992)
Norropis anabilis 0.017 51.3 46.3 0.045 Pair INHS 0.008 Pedicited Norropis anoenus 0.005 52.5 57.1 -0.036 Group INHS 0.000 Suttass and Boschung (1990) from Hubbs and Walker (1942) Notropis anoenus 0.015 55.5 57.1 -0.036 Group INHS 0.000 Predicited Notropis anoenus 0.015 53. 69. -0.040 Group OMNH 0.014 Pyron (2000) Notropis bairifi 0.03 42. 48. -0.058 Group OMNH 0.004 Pyron (2000) Notropis bairifi 0.044 41.6 40.66 0.011 Group INHS 0.009 Pyron (2000) Notropis bachanani 0.069 33.3 3.5.5 -0.021 Group INHS 0.010 Predicited Notropis channingsac 0.012 47.5 48.3 -0.021 Group INHS 0.010 Predicited Notropis heterodon 0.014	Notropis albizonatus	0.007	47.9	49	-0.010	Group	INHS	0.007	Predicted
Notropis anonophilus 0.043 40 40.5 -0.005 Pair INHS 0.005 Suttaiss and Boschnag (1990) from Hubbs and Walker (1942) Notropis arionmus 0.016 52.5 57.1 -0.036 Group INHS 0.003 Johnston and Page (1992) Notropis arionmus 0.013 63 69 -0.040 Group OMNH 0.014 Pyron (2000) Notropis bifernatus 0.003 42 48 -0.058 Group OMNH 0.017 Pyron (2000) Notropis bifernatus 0.001 41.6 40.6 0.011 Group INHS 0.009 Pyron (2000) Notropis buccatus 0.0015 48 48.7 -0.006 Group INHS 0.009 Pyron (2000) Notropis buccatus 0.000 33.9 3.5.6 -0.021 Group INHS 0.010 Prodicted Notropis buccatus 0.004 46.6 1 -0.021 Group INHS 0.030 Johnston and Page (1992) Notropis buctatus <td>Notropis amabilis</td> <td>0.017</td> <td>51.3</td> <td>46.3</td> <td>0.045</td> <td>Pair</td> <td>INHS</td> <td>0.008</td> <td>Predicted</td>	Notropis amabilis	0.017	51.3	46.3	0.045	Pair	INHS	0.008	Predicted
Natropis anonus 0.06 52.5 57.1 -0.036 Group INHS 0.003 Johanson and Page (1992) Natropis ahrinationa 0.016 50.5 49.3 0.082 Pair INHS 0.003 Johanson and Page (1992) Natropis bairdi 0.03 42 48 -0.058 Group OMNH 0.017 Pyron (2000) Natropis bairdin 0.02 54 67.7 -0.098 Group INHS 0.009 Pyron (2000) Natropis baccatus 0.009 33.3 35.5 -0.013 Group INHS 0.009 Johanson and Page (1992) Natropis baccatus 0.009 39.9 42.6 -0.028 Group INHS 0.001 Johanson and Page (1992) Natropis chalybaeus 0.046 46.6 -0.021 Group INHS 0.030 Johanson and Page (1992) Natropis chalybaeus 0.046 45.3 -0.021 Group INHS 0.030 Johanson and Page (1992) Natropis kabrologis 0.014	Notropis ammophilus	0.0043	40	40.5	-0.005	Pair	INHS	0.005	Suttkus and Boschung (1990) from Hubbs and Walker (1942)
Notropis ariommus 0.016 9.5 49.3 0.082 Pair INHS 0.006 Predicted Notropis taherinoides 0.013 63 69 -0.040 Group OMNH 0.014 Pyron (2000) Notropis bifenatus 0.004 41.6 40.6 0.011 Group OMMK 0.004 Pyron (2000) Notropis bifenatus 0.025 54 67.7 -0.098 Group INHS 0.009 Pyron (2000) Notropis buchanani 0.009 33.3 3.5.5 -0.021 Group INHS 0.004 Johnston and Page (1992) Notropis buchanani 0.006 35.9 3.5.6 -0.021 Group INHS 0.01 Predicted Notropis buchanani 0.004 46.4 46.6 -0.021 Group INHS 0.010 Felcther (1993) Notropis buchande 0.012 45.3 0.009 Group INHS 0.010 Felcther (1993) Notropis buchande 0.018 45.3 0.020	Notropis amoenus	0.005	52.5	57.1	-0.036	Group	INHS	0.003	Johnston and Page (1992)
Nonopis atherinoides 0.013 63 69 -0.040 Group OMNH 0.014 Pyron (2000) Norropis birdid 0.03 42 48 -0.058 Group OMNH 0.024 Pyron (2000) Norropis biffenatus 0.022 54 67.7 -0.098 Group INHS 0.009 Pyron (2000) Norropis bops 0.015 48 48.7 -0.006 Group INHS 0.009 Pyron (2000) Norropis bohanant 0.009 33.3 3.5 -0.021 Group INHS 0.001 Johnston and Page (1992) Norropis bohaningse 0.016 46.6 -0.021 Group INHS 0.010 Flether (1993) Norropis dorsalis 0.007 48.6 51 -0.021 Group INHS 0.001 Flether (1993) Norropis dorsalis 0.004 46.2 45.3 0.025 Group INHS 0.004 Flether (1993) Norropis hysechotrus 0.014 45.3 0.025	Notropis ariommus	0.016	59.5	49.3	0.082	Pair	INHS	0.006	Predicted
Notropis bairdi 0.03 42 48 -0.058 Group OMNH 0.027 Pyron (2000) Notropis bipmentus 0.022 54 6.77 -0.098 Group INHS 0.009 Pyron (2000) Notropis bincatus 0.007 33.3 33.5 -0.003 Group INHS 0.009 Predicted Notropis bucchanni 0.006 33.9 35.6 -0.021 Group INHS 0.001 Johnston and Page (1922) Notropis chiliticus 0.046 46.4 46.6 -0.022 Group INHS 0.010 Johnston and Page (1922) Notropis cummingsace 0.012 47.5 48.3 -0.007 Group INHS 0.001 Fedicted Notropis forsatils 0.004 46.2 45.3 0.009 Group INHS 0.001 Itene et al. (1996) Notropis forsatils 0.004 41.2 43.4 0.008 Group INHS 0.007 Itene et al. (1996) Notropis heterodon 0.014	Notropis atherinoides	0.013	63	69	-0.040	Group	OMNH	0.014	Pyron (2000)
Notropis bifmentus 0.004 41.6 40.6 0.011 Group UMMZ 0.004 Pyron (2000) Notropis bennius 0.022 54 67.7 -0.098 Group INHS 0.009 Pyron (2000) Notropis benchanani 0.005 33.3 35.5 -0.003 Group INHS 0.004 Johnston and Page (1992) Notropis buchanani 0.006 33.9 35.6 -0.021 Group INHS 0.011 Predicted Notropis chubhaeus 0.009 42.6 -0.028 Group INHS 0.032 Johnston and Page (1992) Notropis chubhaeus 0.012 47.5 48.3 -0.021 Group INHS 0.032 Johnston and Page (1992) Notropis dorsalis 0.004 46.2 45.3 0.002 Group INHS 0.001 Lane et al. (1996) Notropis heterolon 0.018 46.1 48.3 -0.020 Group INHS 0.001 Lane et al. (1996) Notropis hypedopterus 0.004	Notropis bairdi	0.03	42	48	-0.058	Group	OMNH	0.027	Pyron (2000)
Nonropis beam 0.022 54 67.7 -0.098 Group INHS 0.009 Pyron (2000) Notropis beops 0.015 48 48.7 -0.006 Group INHS 0.009 Predicted Notropis buchanani 0.006 33.3 33.5 -0.021 Group INHS 0.001 Predicted Notropis buchanani 0.006 34.9 42.6 -0.021 Group INHS 0.001 Predicted Notropis chalphacus 0.004 46.6 -0.021 Group INHS 0.010 Predicted Notropis dorsalis 0.012 47.5 48.3 -0.021 Group INHS 0.010 Predicted Notropis dorsalis 0.014 48.4 48.3 -0.020 Group INHS 0.011 Elecher (1993) Notropis hereoden 0.018 46.1 48.3 0.025 Group INHS 0.011 Lane et al. (1996) Notropis hereoden 0.014 48.3 0.026 Group	Notropis bifrenatus	0.004	41.6	40.6	0.011	Group	UMMZ	0.004	Pyron (2000)
Notropis baccatus 0.015 48 48.7 -0.006 Group INHS 0.009 Predicted Notropis buccatus 0.000 33.3 33.5 -0.003 Group INHS 0.004 Johnston and Page (1992) Notropis chalybaeus 0.006 33.9 35.6 -0.021 Group INHS 0.001 Predicted Notropis chalybaeus 0.044 46.4 46.6 -0.022 Group INHS 0.001 Filtether (1993) Notropis channingsae 0.012 47.5 48.3 -0.021 Group INHS 0.001 Fiether (1993) Notropis darsatis 0.007 48.6 51 -0.021 Group INHS 0.001 Fredicted Notropis heterolepis 0.014 48.3 50.02 Group INHS 0.007 tane et al. (1996) Notropis hypselopterus 0.004 41.3 35.4 0.006 Group INHS 0.007 tane et al. (1996) Notropis inbitus 0.014 41.8	Notropis blennius	0.022	54	67.7	-0.098	Group	INHS	0.009	Pyron (2000)
Notropis buccatus 0.009 33.3 33.5 -0.003 Group INHS 0.004 Johnston and Page (1992) Notropis buchanani 0.006 33.9 35.6 -0.021 Group INHS 0.011 Predicted Notropis chalybaeus 0.009 39.9 42.6 -0.028 Group INHS 0.009 Johnston and Page (1992) Notropis chiliticus 0.046 46.4 46.6 -0.021 Group INHS 0.001 Fletcher (1993) Notropis cummingsae 0.014 46.5 1 -0.021 Group INHS 0.001 Fletcher (1993) Notropis greenei 0.004 46.1 48.3 -0.020 Group INHS 0.001 Lane et al. (1996) Notropis heterolepis 0.014 41.3 35.4 0.067 Pair INHS 0.001 Lane et al. (1996) Notropis intras 0.004 41.3 35.4 0.067 Pair INHS 0.005 Predicted Notropis intras 0.026	Notropis boops	0.015	48	48.7	-0.006	Group	INHS	0.009	Predicted
Notropis buchanani 0.006 33.9 35.6 -0.021 Group INHS 0.011 Predicted Notropis chalpbaeus 0.009 39.9 42.6 -0.028 Group INHS 0.009 Johnston and Page (192) Notropis chiliticus 0.046 46.4 46.6 -0.002 Group INHS 0.010 Fletcherd (192) Notropis ciminingsae 0.012 47.5 48.3 -0.007 Group INHS 0.010 Fletcherd (1993) Notropis greenei 0.004 46.2 45.3 0.025 Group INHS 0.001 Lane et al. (1996) Notropis heterolopis 0.014 44.53 0.025 Group INHS 0.004 Predicted Notropis lutiz 0.004 41.3 35.4 0.066 Group INHS 0.005 Predicted Notropis nazas 0.05 54.2 42.1 0.021 Group INHS 0.011 Johnston and Page (192) Notropis nubritus 0.02 48.8	Notropis buccatus	0.009	33.3	33.5	-0.003	Group	INHS	0.004	Johnston and Page (1992)
Noropis chalybaeus 0.009 39.9 42.6 -0.028 Group INHS 0.009 Johnston and Page (1992) Notropis chiliticus 0.046 46.4 46.6 -0.002 Group INHS 0.032 Johnston and Page (1992) Notropis cummingsae 0.012 47.5 48.3 -0.007 Group INHS 0.010 Fletcher (1993) Notropis dersalis 0.007 48.6 51 -0.021 Group INHS 0.004 Predicted Notropis perenei 0.014 46.2 45.3 0.009 Group INHS 0.004 Predicted Notropis heterolopis 0.014 41.3 35.4 0.067 Pair INHS 0.004 Predicted Notropis nus 0.004 41.2 43.4 0.008 Group INHS 0.004 Predicted Notropis nus 0.014 41.3 35.3 -0.026 Group INHS 0.011 Johnston and Page (192) Notropis rubris nus 0.026 53	Notropis buchanani	0.006	33.9	35.6	-0.021	Group	INHS	0.011	Predicted
Notropis chiliticus 0.046 46.4 46.6 -0.002 Group INHS 0.032 Johnston and Page (1992) Notropis cummingsae 0.012 47.5 48.3 -0.007 Group INHS 0.010 Fletcher (1993) Notropis dorsalis 0.007 48.6 51 -0.021 Group INHS 0.004 Predicted Notropis greenei 0.004 46.2 45.3 0.002 Group INHS 0.013 Lane et al. (1996) Notropis heterolon 0.014 48 45.3 0.025 Group INHS 0.004 Predicted Notropis heterolopis 0.014 48.2 43.4 0.008 Group INHS 0.005 Predicted Notropis lutipinis 0.13 55.2 54.5 0.006 Group INHS 0.011 Johnston and Page (1992) Notropis nazas 0.024 48.8 53.3 -0.026 Group INHS 0.011 Johnston and Page (1992) Notropis inbitus 0.013	Notropis chalybaeus	0.009	39.9	42.6	-0.028	Group	INHS	0.009	Johnston and Page (1992)
Notropis cummingsae 0.012 47.5 48.3 -0.007 Group INHS 0.010 Fletcher (1993) Notropis dorsalis 0.007 48.6 51 -0.021 Group INHS 0.005 Predicted Notropis dorsalis 0.004 46.2 45.3 0.009 Group INHS 0.004 Predicted Notropis heterolopis 0.018 46.1 48.3 -0.020 Group INHS 0.017 Lane et al. (1996) Notropis heterolepis 0.014 41.3 35.4 0.067 Pair INHS 0.004 Predicted Notropis litipinnis 0.136 55.2 54.5 0.006 Group INHS 0.005 Weideted Notropis nazas 0.05 44.2 43.4 0.021 Group INHS 0.011 Johnston and Page (1992) Notropis nubilus 0.024 48.8 53.3 -0.026 Group INHS 0.011 Johnston and Page (1992) Notropis nubilus 0.013 74.2	Notropis chiliticus	0.046	46.4	46.6	-0.002	Group	INHS	0.032	Johnston and Page (1992)
Notropic Socie 0.007 48.6 51 -0.021 Group INHS 0.005 Predicted Notropis greenei 0.004 46.2 45.3 0.009 Group INHS 0.004 Predicted Notropis heterolon 0.018 46.1 48.3 -0.020 Group INHS 0.013 Lane et al. (1996) Notropis heterolopis 0.014 48 45.3 0.025 Group INHS 0.001 Lane et al. (1996) Notropis hypselopterus 0.004 41.3 35.4 0.067 Pair INHS 0.005 Predicted Notropis insins 0.136 55.2 54.5 0.006 Group INHS 0.039 Predicted Notropis nubilus 0.02 48.8 53.3 -0.026 Group INHS 0.011 Johnston and Page (1992) Notropis photogenis 0.013 74.2 73.1 0.006 Group INHS 0.012 Predicted Notropis photogenis 0.013 46.4	Notropis cummingsae	0.012	47.5	48.3	-0.007	Group	INHS	0.010	Fletcher (1993)
Norpsi greenei 0.004 46.2 45.3 0.009 Grup INHS 0.004 Predicted Notropis heterolopis 0.018 46.1 48.3 -0.020 Group INHS 0.013 Lane et al. (1996) Notropis heterolepis 0.01 48 45.3 0.025 Group INHS 0.004 Predicted Notropis hypselopterus 0.004 41.3 35.4 0.067 Pair INHS 0.004 Predicted Notropis lirus 0.004 44.2 43.4 0.008 Group INHS 0.056 Wallin (1992) Notropis nazas 0.05 44.2 42.1 0.021 Group INHS 0.011 Johnston and Page (1992) Notropis nubilus 0.02 48.8 53.3 -0.026 Group INHS 0.012 Predicted Notropis photogenis 0.013 74.2 73.1 0.006 Group INHS 0.014 Johnston and Page (1992) Notropis submardi 0.014 44.3	Notropis dorsalis	0.007	48.6	51	-0.021	Group	INHS	0.005	Predicted
Notropis heterodon 0.018 46.1 48.3 -0.020 Group INHS 0.013 Lane et al. (1996) Notropis heterolepis 0.01 48 45.3 0.025 Group INHS 0.007 Lane et al. (1996) Notropis hypselopterus 0.004 41.3 35.4 0.067 Pair INHS 0.004 Predicted Notropis lints 0.004 44.2 43.4 0.008 Group INHS 0.005 Predicted Notropis lutipinnis 0.136 55.2 54.5 0.006 Group INHS 0.011 Johnston and Page (1992) Notropis nubilus 0.02 53.9 57.2 -0.026 Group INHS 0.011 Johnston and Page (1992) Notropis rubellus 0.03 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis rubellus 0.03 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis subuiru	Notropis greenei	0.004	46.2	45.3	0.009	Group	INHS	0.004	Predicted
Notropis heterolepis 0.01 48 45.3 0.025 Group INHS 0.007 Lane et al. (1996) Notropis hypselopterus 0.004 41.3 35.4 0.067 Pair INHS 0.004 Predicted Notropis lutipinnis 0.136 55.2 54.5 0.006 Group INHS 0.039 Predicted Notropis nazas 0.05 44.2 42.1 0.021 Group INHS 0.039 Predicted Notropis nubilus 0.02 48.8 53.3 -0.038 Group INHS 0.011 Johnston and Page (1992) Notropis pis presoni 0.026 53.9 57.2 -0.020 Group INHS 0.012 Predicted Notropis pubellus 0.03 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis rubellus 0.03 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis submardi 0.014 <t< td=""><td>Notropis heterodon</td><td>0.018</td><td>46.1</td><td>48.3</td><td>-0.020</td><td>Group</td><td>INHS</td><td>0.013</td><td>Lane et al. (1996)</td></t<>	Notropis heterodon	0.018	46.1	48.3	-0.020	Group	INHS	0.013	Lane et al. (1996)
Notropis hysoelopterus 0.004 41.3 35.4 0.067 Pair INHS 0.004 Predicted Notropis lirus 0.004 44.2 43.4 0.008 Group INHS 0.005 Predicted Notropis lutipinnis 0.136 55.2 54.5 0.006 Group INHS 0.056 Wallin (1992) Notropis nazas 0.05 44.2 42.1 0.021 Group INHS 0.039 Predicted Notropis nubilus 0.02 48.8 53.3 -0.026 Group INHS 0.011 Johnston and Page (1992) Notropis potogenis 0.013 74.2 73.1 0.006 Group INHS 0.012 Predicted Notropis rubritorseus 0.038 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis rubritorseus 0.0086 35.4 38.9 -0.041 Group INHS 0.014 Johnston and Page (1992) Notropis stumarieus 0.015	Notropis heterolepis	0.01	48	45.3	0.025	Group	INHS	0.007	Lane et al. (1996)
Notropis lirus 0.004 44.2 43.4 0.008 Group INHS 0.005 Predicted Notropis lutipinnis 0.136 55.2 54.5 0.006 Group INHS 0.005 Wallin (1992) Notropis nazas 0.05 44.2 42.1 0.021 Group INHS 0.039 Predicted Notropis nubilus 0.02 48.8 53.3 -0.038 Group INHS 0.011 Johnston and Page (1992) Notropis pis photogenis 0.013 74.2 73.1 0.006 Group INHS 0.012 Predicted Notropis rubellus 0.03 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis rubricroseus 0.008 35.4 38.9 -0.041 Group INHS 0.011 Johnston and Page (1992) Notropis shumardi 0.014 44.3 37.7 0.070 Pair INHS 0.011 Predicted Notropis stibius 0.0007 51	Notropis hypselopterus	0.004	41.3	35.4	0.067	Pair	INHS	0.004	Predicted
Notropis International Internation International International </td <td>Notropis lirus</td> <td>0.004</td> <td>44.2</td> <td>43.4</td> <td>0.008</td> <td>Group</td> <td>INHS</td> <td>0.005</td> <td>Predicted</td>	Notropis lirus	0.004	44.2	43.4	0.008	Group	INHS	0.005	Predicted
Notropis magninis Office Office <thoffice< th=""> <</thoffice<>	Notropis lutininnis	0.136	55.2	54.5	0.006	Group	INHS	0.056	Wallin (1992)
Notopis nutation 0.02 1.1.2 1.1.1 0.011 Group INIS 0.025 1.1.1 1.1.1 0.011 Group INIS 0.013 1.1.1 0.011 Group INIS 0.011 Johnston and Page (1992) Notropis petersoni 0.026 53.9 57.2 -0.026 Group INHS 0.012 Predicted Notropis petersoni 0.03 46 48.2 -0.020 Group INHS 0.027 Pyron (2000) Notropis rubricroseus 0.0086 35.4 38.9 -0.041 Group INHS 0.014 Johnston and Page (1992) Notropis submardi 0.014 44.3 37.7 0.070 Pair INHS 0.011 Predicted Notropis stainbius 0.008 53.2 58.3 -0.040 Pair INHS 0.005 Mayden and Simons (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.000 Platania and Altenbach (1998) Notropis texanus	Notropis nazas	0.05	44.2	42.1	0.021	Group	INHS	0.039	Predicted
Notropis methad 0.02 60.0 60.0 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 77.2 70.026 60.00 60.00 77.2 70.026 60.00 60.00 77.2 70.026 60.00 60.00 77.2 70.00 60.00 77.2 70.00 60.00 77.2 70.00	Notropis nubilus	0.02	48.8	53.3	-0.038	Group	INHS	0.011	Johnston and Page (1992)
Notopic periodal 0.026 0.027 73.1 0.026 Group INIS 0.012 Frederical Notropis photogenis 0.013 74.2 73.1 0.006 Group INHS 0.004 Predicted Notropis rubellus 0.03 46 48.2 -0.020 Group INHS 0.014 Johnston and Page (1992) Notropis rubricroseus 0.0086 35.4 38.9 -0.041 Group INHS 0.014 Johnston and Page (1992) Notropis shumardi 0.014 44.3 37.7 0.070 Pair INHS 0.011 Predicted Notropis spectrunculus 0.007 51.3 49.8 0.013 Group INHS 0.006 Predicted Notropis stillius 0.008 53.2 58.3 -0.040 Pair INHS 0.005 Mayden and Simons (2002) Notropis tramineus 0.015 47.8 46.6 0.011 Group INHS 0.000 Platania and Altenbach (1998) Notropis treanus	Notropis netersoni	0.026	53.9	57.2	-0.026	Group	INHS	0.012	Predicted
Notropis plotogene 0.015 7.12 7.11 0.000 Group INHS 0.001 Frenched Notropis rubellus 0.03 46 48.2 -0.020 Group INHS 0.027 Pyron (2000) Notropis rubricroseus 0.0086 35.4 38.9 -0.041 Group INHS 0.014 Johnston and Page (1992) Notropis shumardi 0.014 44.3 37.7 0.070 Pair INHS 0.011 Predicted Notropis spectrunculus 0.007 51.3 49.8 0.013 Group INHS 0.006 Predicted Notropis stilibius 0.008 53.2 58.3 -0.040 Pair INHS 0.005 Mayden and Simons (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.00 Platania and Altenbach (1998) Notropis texanus 0.006 51.2 56.7 -0.043 Group INHS 0.001 Predicted Notropis valueellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyro	Notropis photogenis	0.013	74.2	73.1	0.006	Group	INHS	0.004	Predicted
Notropis rubricoseus 0.008 35.4 38.9 -0.041 Group INHS 0.014 Johnston and Page (1992) Notropis shumardi 0.014 44.3 37.7 0.070 Pair INHS 0.011 Predicted Notropis shumardi 0.007 51.3 49.8 0.013 Group INHS 0.011 Predicted Notropis stilbius 0.008 53.2 58.3 -0.040 Pair INHS 0.005 Mayden and Simons (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.009 Platania and Altenbach (1998) Notropis telescopus 0.011 46.6 51.5 -0.043 Group INHS 0.001 Predicted Notropis texanus 0.006 51.2 56.7 -0.044 Group INHS 0.010 Predicted Notropis valucellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted<	Notropis ruhellus	0.03	46	48.2	-0.020	Group	INHS	0.027	Pyron (2000)
Notropis shumardi 0.014 44.3 37.7 0.070 Pair INHS 0.011 Predicted Notropis shumardi 0.007 51.3 49.8 0.013 Group INHS 0.006 Predicted Notropis stilbius 0.008 53.2 58.3 -0.040 Pair INHS 0.005 Mayden and Simons (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.009 Platania and Altenbach (1998) Notropis telescopus 0.011 46.6 51.5 -0.043 Group INHS 0.001 Predicted Notropis telescopus 0.006 51.2 56.7 -0.044 Group INHS 0.003 Pyron (2000) Notropis volucellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoedus emiliae 0.037 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) <td>Notropis rubricroseus</td> <td>0.0086</td> <td>35.4</td> <td>38.9</td> <td>-0.041</td> <td>Group</td> <td>INHS</td> <td>0.027</td> <td>Johnston and Page (1992)</td>	Notropis rubricroseus	0.0086	35.4	38.9	-0.041	Group	INHS	0.027	Johnston and Page (1992)
Notropis simulation 0.011 11.3 51.7 0.010 1 min 11.15 0.011 11.05 Notropis spectrunculus 0.007 51.3 49.8 0.013 Group INHS 0.006 Predicted Notropis stilbius 0.008 53.2 58.3 -0.040 Pair INHS 0.005 Mayden and Simons (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.009 Platania and Altenbach (1998) Notropis telescopus 0.011 46.6 51.5 -0.043 Group INHS 0.001 Predicted Notropis texanus 0.006 51.2 56.7 -0.044 Group INHS 0.007 Pyron (2000) Notropis volucellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000)	Notropis shumardi	0.014	44.3	37.7	0.070	Pair	INHS	0.011	Predicted
Notropis spectratical 0.007 91.5 10.6 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 Pair INHS 0.005 Mayden and Simons (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.009 Platania and Altenbach (1998) Notropis telescopus 0.011 46.6 51.5 -0.043 Group INHS 0.010 Predicted Notropis texanus 0.006 51.2 56.7 -0.044 Group INHS 0.007 Pyron (2000) Notropis volucellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group IN	Notropis snectrunculus	0.007	513	49.8	0.070	Group	INHS	0.006	Predicted
Notropis stability 0.000 50.2 50.5 0.000 Full Full FULL 0.005 Fully defi due binfolds (2002) Notropis stramineus 0.015 47.8 46.6 0.011 Group INHS 0.009 Platania and Altenbach (1998) Notropis telescopus 0.011 46.6 51.5 -0.043 Group INHS 0.010 Predicted Notropis texanus 0.006 51.2 56.7 -0.044 Group INHS 0.003 Pyron (2000) Notropis volucellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis xaenocephalus 0.01 46.7 54.8 -0.069 Group INHS 0.008 Predicted Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018<	Notropis stilbius	0.008	53.2	58.3	-0.040	Pair	INHS	0.005	Mayden and Simons (2002)
Notropis biramineus 0.012 11.0 0.011 0.0010 Predicted Notropis texanus 0.006 51.2 56.7 -0.044 Group INHS 0.003 Pyron (2000) Notropis valuellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018 Johnston and Page (1992) Phenacobius uranops 0.025 72.	Notropis stramineus	0.015	47.8	46.6	0.011	Group	INHS	0.009	Platania and Altenbach (1998)
Notropis telescopus 0.011 10.0 51.5 0.015 0.003 Pyron (2000) 0.005 0.005 0.007 Pyron (2000) 0.005 0.016 0.008 Predicted 0.008 0.010 Predicted 0.005 0.016 0.0018 0.004 Pyron (2000) 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.018 0.0018 0.0019 0.019 0.018 0.0019 0.018 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019	Notronis telesconus	0.011	46.6	51.5	-0.043	Group	INHS	0.010	Predicted
Notropis volucellus 0.007 42.1 42.2 -0.001 Group INHS 0.007 Pyron (2000) Notropis volucellus 0.01 46.7 54.8 -0.069 Group INHS 0.008 Predicted Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018 Johnston and Page (1992) Phenacobius uranops 0.025 72.4 76.4 -0.023 Group INHS 0.007 Predicted Phoxinus eos 0.013 35.7 36.9 -0.014 Group INHS 0.007 Predicted	Notropis texanus	0.006	51.2	56.7	-0.044	Group	INHS	0.003	Pyron (2000)
Notropis volucinus 0.007 12.1 12.2 0.001 Group INHS 0.007 Fylon (2000) Notropis xaenocephalus 0.01 46.7 54.8 -0.069 Group INHS 0.008 Predicted Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018 Johnston and Page (1992) Phenacobius mirabilis 0.034 65.5 65.6 -0.001 Group INHS 0.008 Pyron (2000) Phenacobius uranops 0.025 72.4 76.4 -0.023 Group INHS 0.007 Predicted Phoxinus eos 0.013 35.7 36.9 -0.014 Group INHS 0.002 Johnston and Page (1992)	Notropis volucellus	0.007	42.1	42.2	-0.001	Group	INHS	0.007	Pyron (2000)
Notropis zonatus 0.01 10.1 9.10 0.005 Oropi INIS 0.000 Interfecture Notropis zonatus 0.104 81.4 69 0.072 Pair INHS 0.010 Predicted Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018 Johnston and Page (1992) Phenacobius mirabilis 0.034 65.5 65.6 -0.001 Group INHS 0.008 Pyron (2000) Phenacobius uranops 0.025 72.4 76.4 -0.023 Group INHS 0.007 Predicted Phoxinus eos 0.013 35.7 36.9 -0.014 Group INHS 0.002 Johnston and Page (1992)	Notronis xaenocenhalus	0.01	46.7	54.8	-0.069	Group	INHS	0.008	Predicted
Opsopoeodus emiliae 0.007 42.1 37.5 0.050 Pair TU 0.004 Pyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018 Johnston and Page (1992) Phenacobius mirabilis 0.034 65.5 65.6 -0.001 Group INHS 0.008 Pyron (2000) Phenacobius uranops 0.025 72.4 76.4 -0.023 Group INHS 0.007 Predicted Phoxinus eos 0.013 35.7 36.9 -0.014 Group INHS 0.002 Johnston and Page (1992)	Notronis zonatus	0.104	81.4	69	0.072	Pair	INHS	0.010	Predicted
Phenacobius crassilabrum 0.007 72.1 57.5 0.000 Fail FO 0.004 Fyron (2000) Phenacobius crassilabrum 0.087 73.4 71.1 0.014 Group INHS 0.018 Johnston and Page (1992) Phenacobius mirabilis 0.034 65.5 65.6 -0.001 Group INHS 0.008 Pyron (2000) Phenacobius uranops 0.025 72.4 76.4 -0.023 Group INHS 0.007 Predicted Phoxinus eos 0.013 35.7 36.9 -0.014 Group INHS 0.002 Johnston and Page (1992)	Onsonocodus emiliae	0.007	42.1	37.5	0.050	Pair		0.010	Pyron (2000)
Phenacobius virasitation and visual virasitation and visual virasitation and visual virasitation and visual virasitation virasitat	Phanacohius crassilahrum	0.007	73 /	71.1	0.014	Group	INHS	0.004	Iohnston and Page (1002)
Phenacobius unanops 0.057 0.53 0.50 0.001 GroupINHS 0.008 Fyron (2000)Phenacobius uranops 0.025 72.4 76.4 -0.023 GroupINHS 0.007 PredictedPhoxinus eos 0.013 35.7 36.9 -0.014 GroupINHS 0.002 Johnston and Page (1992)	Phanacobius mirabilis	0.087	65 5	65.6	-0.001	Group	INHS	0.010	Pyron (2000)
Phoxinus eos 0.013 35.7 36.9 -0.014 Group INHS 0.007 Inducted	Phenacohius uranons	0.025	72 A	76 4	-0.023	Group	INHS	0.007	Predicted
	Phoxinus eos	0.013	35.7	36.9	-0.014	Group	INHS	0.007	Iohnston and Page (1997)

Table 1 (continued)

Table 1 (continued)

Species	Testes mass (g)	Male SL (mm)	Female SL (mm)	Log male SL–female SL	Spawning mode	Source of material	Testes/ body mass	Mating system source
Phoxinus erythrogaster	0.012	46	45.6	0.004	Group	INHS	0.009	Johnston and Page (1992)
Phoxinus neogaeus	0.05	50.3	50	0.003	Group	INHS	0.020	Johnston and Page (1992)
Phoxinus oreas	0.015	43.8	49.1	-0.050	Group	INHS	0.010	Johnston and Page (1992)
Pimephales notatus	0.017	71.6	58.5	0.088	Pair	INHS	0.004	Pyron (2000)
Pimephales promelas	0.029	52.8	46.1	0.059	Pair	INHS	0.010	Cole and Smith (1987)
Pimephales vigilax	0.028	56.6	41.6	0.134	Pair	OMNH	0.009	Pyron (2000)
Platygobio gracilis	0.023	53.2	82.8	-0.192	Group	INHS	0.007	Predicted
Pteronotropis hubbsi	0.007	43.5	40	0.036	Pair	INHS	0.007	Fletcher and Burr (1992)
Pteronotropis signipinnis	0.002	44.6	39.9	0.048	Pair	INHS	0.002	Albanese (2000)
Pteronotropis welaka	0.06	36.1	34.7	0.017	Group	Johnston and Knight (1999)	0.002	Johnston and Knight (1999)
Ptychocheilus grandis	0.06	293	384	-0.117	Group	Beamesderfer (1992)	0.004	Johnston and Page (1992)
Rhinichthys atratulus	0.01	59.6	59	0.004	Group	INHS	0.003	Pyron (2000)
Rhinichthys cataractae	0.01	57.7	63.6	-0.042	Group	INHS	0.004	Johnston and Page (1992)
Rhinichthys osculus	0.05	48.6	43.2	0.051	Group	INHS	0.025	Mueller (1984)
Richardsonius balteatus	0.068	64.8	57.7	0.050	Group	UMMZ	0.014	Pyron (2000)
Semotilus atromaculatus	0.419	123	103	0.077	Pair	UMMZ	0.014	Pyron (2000)
Semotilus corporalis	0.014	69.9	69.7	0.001	Pair	INHS	0.003	Ross and Reed (1978)
Semotilus lumbee	0.26	56.4	107	-0.278	Pair	INHS	0.089	Johnston and Page (1992)
Semotilus thoreauianus	0.012	72	65.3	0.042	Pair	INHS	0.002	Predicted
Tiaroga cobitis	0.04	49.8	51.7	-0.016	Pair	UMMZ	0.020	Pyron (2000)

The species where mating systems were predicted are listed under "Mating system source"

for independent evolution of SSD (categorized) and mating system (pair or group spawning). This analysis was repeated with and without taxa, in which we estimated mating system, to verify that results were not solely due to our mating system predictions using SSD.

We tested for independent effects in an additive model with female and male SL, testes mass, and mating system using phylogenetic least squares regressions (PGLS) in the R (v2.15.0) package "caper" (Orme et al. 2012; R Development Core Team 2010). PGLS uses a branch length transformation (Pagel's λ) that maximizes the fit of the phylogeny to Brownian motion (Pagel 1999; Freckleton et al. 2002). In addition, we performed a PGLS analysis to determine the effect of mating system (pair or group) on testes mass. All variables were log-transformed before analysis. We calculated phylogenetic signal (Pagel's λ) for SSD and testes mass in the "caper" package and we used fitDiscrete from the "geiger" package (Harmon et al. 2008) to calculate phylogenetic signal for the categorical mating system variable. The presence of allometry in SSD (Rensch's rule) with changes in body size was tested by comparing the slope of a PGLS regression for male SL on female SL to a null model 1:1 slope by calculating 95 % confidence intervals (Sokal and Rohlf 1995).

Results

We collected testes mass and SSD scores for 111 taxa and spawning mode for 90 taxa (Table 1 and Electronic supplementary material). We attempted to locate large sample sizes for each species, but museum collections frequently did not have large numbers of mature individuals. The mean sample size per species was 8.3 (SD=3.9) and ranged from 1 to 20 (one taxon had a sample size of 1). A discriminant function analysis of SSD correctly classified 73 % of 90 taxa using discrete mating systems. We assigned spawning mode using SSD to the 21 taxa where mating system information was not available using a SSD value of 0.02 (males larger than females) as species with pair spawning and species with SSD values <0.02 as group spawning (Pyron 1996). Six of the 21 taxa with unknown mating systems were assigned mating systems of pair spawning and 15 taxa as group spawning (Table 1). We traced the evolution of SSD and mating system on the composite cladogram of all 111 taxa (Fig. 1). The ancestral spawning mode for cyprinids is group spawning and the ancestral SSD score is females larger than males. Character changes in SSD from females the same size or larger than males to males larger than females occurred 10 times on the cladogram. There were no reversals

from males larger than females to males the same size or smaller. Character changes from group spawning to pair spawning occurred 16 times on the cladogram (not shown in Fig. 1), with a single reversal in Luxilis pilsbryi Fowler. We examined ancestral changes in male and female body size separately from SSD score and found that changes occurred at the same nodes and in the same direction (male and female SL reconstructions) for 9 of 13 character changes when these characters were traced separately. Of the 10 character changes in SSD that resulted in males larger than females, only two or three of these changes occurred simultaneously with increased male body size. Female SL decreased multiple times in reconstructions, but only a few occurred with increased SSD (males larger than females; Fig. 1). The evolution of SSD does not occur by independent changes in the body size of males or females.

Modeling the relationship between male and female standard length allows all predictors to be interpreted in terms of SSD. As a result, SSD was negatively correlated with testes mass (Table 2). Phylogenetic signal (λ) was present for all variables: SSD value were 0.729, 0.515 for testes mass, and 0.812 for mating system, indicating that traits are frequently present in taxa because of ancestral relationships (Blomberg et al. 2003). Moreover, SSD was significantly correlated with mating system. Finally, we found in a phylogenetic model that there was no difference in testes mass between pair spawners and group spawners with all species included $(F_{2,108}, p=0.42)$ or with only species where we did not estimate mating systems ($F_{2.89}$, p=0.35). Male and female SLs were positively correlated with a slope of 0.98 (Fig. 2), indicating a lack of significant allometry in male body size and an absence of Rensch's rule (Fairbairn 1997).

Discussion

Females are larger than males in most animals, likely due to selection for increased fecundity (Darwin 1871; Andersson 1994). A pattern of hyperallometry is expected in taxa where sexual selection is stronger for males (Walker and McCormick 2009) as they compete for access to females and attempt to maintain their reproductive dominance (Shuster and Wade 2003; Grosenick et al. 2007). In Cyprinidae fishes, males are larger than females in species where males guard territories or compete for females (Pyron 1996). However, we did not find evidence for Rensch's rule as has been previously found in intraspecific and interspecific studies (Abouheif and Fairbairn 1997; Young 2005; Dale et al. 2007). Although hyperallometry may be present in individual fish taxa, such as the spotfin shiner Cyprinella spiloptera Cope (Pyron et al. 2007) and two blennioids (family Blenniidae; Lengkeek et al. 2008), an overall family-wide pattern was not present in Cyprinidae fishes. Intraspecific variation in hyperallometry may be common (Pyron et al. 2007), providing additional complexity to interpreting patterns in higher taxa. For example, Abouheif and Fairbairn (1997) and Webb and Freckleton (2007) found evidence for hyperallometry only in analyses where species with female-biased SSD were separated from species with male-biased SSD. Furthermore, when Webb and Freckleton (2007) analyzed all 61 minnow species from Pyron's (1996) allometry study, they found no evidence for either hyperallometry or hypoallometry, similar to our current results. We interpret these results as evidence for correlated evolution of male and female body length, with a few exceptions where males evolved larger body size than females. Similar to our findings, there was no evidence that SSD was the result of a separate evolution of male or female body size in Phrynosoma lizards, which lack male-male competition and male territoriality (Zamudio 1998).

Although sexual selection is proposed to be the ultimate cause of variation in growth rate, differences in the developmental growth of males and females is said to be the proximate cause of SSD (Blanckenhorn 2005; Walker and McCormick 2009). Blanckenhorn (2005) recommends a combination of comparative phylogenetic analyses and manipulative experiments on individual species to identify causes for SSD evolution. Although the role of sex-specific growth plasticity in shaping morphological features has been demonstrated in reef fish (Walker and McCormick 2009), manipulative experiments of sexual selection are currently lacking in cyprinid fish.

The plesiomorphic state for cyprinid mating systems is group spawning (Johnston and Page 1992; Pyron 1996; Mayden and Simons 2002). Although 34 of the 111 taxa in this study are pair spawners, no examples of reversals to group spawning occurred in reconstructions using parsimony. In addition, the pair spawning behavior is distributed widely across the clade, with multiple independent origins. Thus, based on a cladogram of 111 taxa, evolution of group spawning from pair spawning does not occur. This suggests the presence of phylogenetic constraints to reversals for male competition and territorial behaviors or constraints for the evolution of characters for sperm competition. Blanckenhorn (2005) suggests that this approach of inferring selective pressures in the past from current observations is problematic. For example, male-biased SSD may evolve as a result of male competition or mate guarding behavior being sexually selected. However, the evolution of mating systems may also result as a consequence of SSD as social mating system is predictive of size allometry (Dale et al. 2007). In addition, our characterization of mating systems into two alternative mating systems likely oversimplifies their complexity and influences our results, as does our classification of mating systems from SSD.

We found a negative correlation for testes mass with SSD. Species with small testes tended to have males larger than females, as predicted based on the probability of sperm

Fig. 1 Composite Cyprinidae phylogeny constructed as described in text. SSD score (log male SL-log female SL) is depicted on the cladogram. Spawning mode is shown *at the end of bars*

and the <i>p</i> value (nonit the relevant	phylogenetically controlled a	haryses using FGLS, see Methods	ior details)	
Variable	Estimate	Standard error	t value	p value
All species (including those with n	nating systems estimated from	n SSD) are included		
Male SL	0.98	0.02	39.3	< 0.001
Testes mass	-0.03	0.01	-2.4	0.018
Mating system	-0.05	0.01	-3.4	< 0.001
Species with mating systems estim	ated from SSD not included			
Male SL	0.98	0.02	38.3	< 0.001
Testes mass	-0.03	0.01	-2.3	0.022
Mating system	-0.04	0.02	-2.6	0.01

Table 2 Results for additive phylogenetic models predicting SSD, including the estimate, standard error associated with each variable, the t value, and the p value (from the relevant phylogenetically controlled analyses using PGLS, see "Methods" for details)

All species are included in the upper analyses (n=111). Species with mating systems estimated from SSD are not included in the bottom analyses (n=90). See text for details

competition (Parker 1992; Dunn et al. 2001). Although the correlation was significant, the relationship explained relatively low variation. Other methods for quantifying sperm quality or morphology have the potential to provide stronger estimates of SSD (Lüpold et al. 2008). In addition, several of the taxa we sampled resulted in low sample sizes, potentially biasing the results.

Intraspecific variation can lead to a great amount of disparity within a data set, ultimately affecting a predicted relationship. In our analyses, we were unable to control for this variation in our measured variables. Variation within a single species is expected to exist throughout nature and can result from a number of forces, including environmental and seasonal conditions. Wong-Muñoz et al. (2011) identified seasonal variation in SSD that fit predictions for mating system covariation. Consequently, details of intraspecific variation in mating system variables across geographic ranges (Blanckenhorn et al. 2007) and seasons will allow verification of these patterns in other taxa.

Conclusions

Our results demonstrate that the evolution of mating systems in Cyprinidae fishes is predictable, from ancestral taxa that are group spawners with females the same size or larger than males to recent taxa that retain their ancestral mating system unless males are territorial. This provides support that mating systems and sexual size dimorphism evolve in predictable patterns, but not testes mass. We predicted mating systems for 21 species that were lacking information based on SSD. These patterns for mating system evolution in the cladogram are likely valid, but need to be verified empirically. Additionally, we did not find evidence for hyperallometry in

Cyprinidae fishes, although individual species of Cyprinidae can have hyperallometry for SSD (Rensch's rule).

Acknowledgments We are grateful to Mike Retzer at the Illinois Natural History survey for fish loans.

References

- Abouheif E, Fairbairn DJ (1997) A comparative analysis of allometry for sexual size dimorphism: assessing Rensch's rule. Am Nat 149:540–562
- Albanese B (2000) Reproductive behavior and spawning microhabitat of the flagfin shiner *Pteronotropis signipinnis*. Am Midl Nat 143:84–93
- Andersson MB (1994) Sexual selection. Princeton University Press, Princeton
- Badyaev AV (2002) Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol 17:369– 378
- Beamesderfer RC (1992) Reproduction and early life history of northern squawfish, *Ptychocheilus oregonensis*, in Idaho's St Joe River. Environ Biol Fish 35:231–241
- Beausoleil JJ, Doucet SM, Heath DD, Pitcher TE (2012) Spawning coloration, female choice and sperm competition in the redside dace, *Clinostomus elongatus*. Anim Behav 83:969–977
- Blanckenhorn WU (2005) Behavioral causes and consequences of sexual size dimorphism. Ethology 111:977–1016
- Blanckenhorn WU, Dixon AFG, Fairbairn DJ, Foellmer MW, Gilbert P, van der Linde K, Meier R, Nylin S, Pitnick S, Schoff C, Signorelli M, Wiklund C (2007) Proximate causes of Rensch's rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am Nat 169:245–257
- Blinn DW, White J, Pradetto T, O'Brien J (1998) Reproductive ecology and growth of a captive population of little Colorado spinedace (*Lepidomeda vittata*: Cyprinidae). Copeia 1998:1010–1015
- Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745
- Bufalino AP, Mayden RL (2010) Phylogenetic relationships of North American phoxinins (Actinopeterygii: Cypriniformes: Leuciscidae) as inferred from S7 nuclear DNA sequences. Mol Phylogenet Evol 55:143–152
- Clutton-Brock T (2007) Sexual selection in males and females. Science 318:1882–1885
- Cole KS, Smith RJF (1987) Male courting behavior in the fathead minnow, *Pimephales promelas* (Rafinesque). Environ Biol Fish 18:235–239
- Colwell RK (2000) Rensch's rule crosses the line: convergent allometry of sexual size dimorphism in hummingbirds and flower mites. Am Nat 156:495–510
- Cox RM, Skelly SL, John-Alder HB (2003) A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution 57:1653–1669
- Dale J, Dunn PO, Figuerola J, Lislevand T, Székely T, Whittingham LA (2007) Sexual selection explains Rensch's rule of allometry for sexual size dimorphism. Proc R Soc Lond B 274:2971–2979
- Darwin CR (1871) The descent of man, and selection in relation to sex. J Murray, London
- Dunn PO, Whittingham LA, Pitcher TE (2001) Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55:161–175
- Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

- Fairbairn DJ (1997) Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu Rev Ecol Syst 28:659–687
- Fletcher DE (1993) Nest association of dusky shiners (*Notropis cummingsae*) and redbreast sunfish (*Lepomis auritus*), a potentially parasitic relationship. Copeia 1993:159–167
- Fletcher DE, Burr BM (1992) Reproductive biology, larval description, and diet of the North American bluehead shiner, *Pteronotropis hubbsi* (Cypriniformes: Cyprinidae), with comments on conservation status. Ichthyol Explor Fres 3:193–218
- Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726
- Frýdlová P, Frynta D (2010) A test of Rensch's rule in varanid lizards. Biol J Linn Soc 100:293–306
- Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364
- Garland T Jr, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015– 3035
- Grosenick L, Clement TS, Fernald RD (2007) Fish can infer social rank by observation alone. Nature 445:429–423
- Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131
- Hormiga G, Scharff NJ, Coddington JA (2000) The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Syst Biol 49:435–462
- Hubbs CL, Walker BW (1942) Habitat and breeding behavior of the American cyprinid fish *Notropis longirotris*. Copela 101– 104
- Jenkins RE, Burkhead NM (1993) Freshwater fishes of Virginia. American Fisheries Society, Bethesda, MD
- Johnston CE, Knight CL (1999) Life-history traits of the bluenose shiner, *Pteronotropis welaka* (Cypriniformes: Cyprinidae). Copeia 1999:200–205
- Johnston CE, Page LM (1992) The evolution of complex reproductive strategies in North American minnows (Cyprinidae). In: Mayden RL (ed) Systematics, historical ecology, and North American freshwater fishes. Stanford University Press, Stanford, CA, pp 600–621
- Lane JA, Portt CB, Minns CK (1996) Spawning habitat characteristics of Great Lakes fishes. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2368
- Lengkeek W, Didderen K, Côté IM, van der Zee EM, Snoek RC, Reynolds JD (2008) Plasticity in sexual size dimorphism and Rensch's rule in Mediterranean blennies (Blenniidea). Can J Zool 86:1173–1178
- Lüpold S, Linz GM, Westneat DF, Birkhead TR (2008) Sperm competition selects beyond relative testes size in birds. Evolution 63:291–402
- Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis, version 273. http://mesquiteproject.org
- Maurakis EG, Roston W (1998) Spawning behavior in *Nocomis asper* (Actinopterygii: Cyprinidae). Va J Sci 49:199–202
- Maurakis EG, Woolcott WS, Sabaj MH (1991) Reproductive-behavioral phylogenetics of *Nocomis* species-groups. American Midland Naturalist 126:103–110
- Mayden RL, Simons AM (2002) Crevice spawning behavior in *Dionda dichroma*, with comments on the evolution of spawning modes in North American shiners (Teleostei: Cyprinidae). Rev Fish Biol Fish 12:327–337
- Mayden RL, Simons AM, Wood RM, Harris PM, Kuhajda BR (2006) Molecular systematics and classification of North American Notropin shiners and minnows (Cypriniformes: Cyprinidae). In: Lozano-Vilano ML, Contreras-Balderas AJ (eds) Studies of North

American desert fishes. Universidad Autonoma de Nuevo Leon, Mexico, pp 72–101

- Midford PE, Garland T Jr, Maddison W (2002) PDAP:PDTREE package for Mesquite, version 115. http://mesquiteprojectorg/ pdap mesquite/
- Moyer GR, Remington RK, Turner TF (2009) Incongruent gene trees, complex evolutionary processes, and the phylogeny of a group of North American minnows (*Hybognathus* Agassiz 1855). Mol Phylogenet Evol 50:514–525
- Mueller GA (1984) Spawning by *Rhinichthys osculus* (Cyprinidae), in the San Francisco River, New Mexico. Southwest Nat 29:354– 356
- Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N (2012) caper: comparative analyses of phylogenetics and evolution in R. http://CRANR-projectorg/package=caper. Accessed 3 June 2012
- Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B 255:37–45
- Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622
- Parker GA (1992) The evolution of sexual size dimorphism in fish. J Fish Biol 41:1–20
- Parker GA, Ball MA (2005) Sperm competition, mating rate and the evolution of testis and ejaculate sizes: a population model. Biol Lett 1:235–238
- Platania SP, Altenbach CS (1998) Reproductive strategies and egg types of seven Rio Grande Basin cyprinids. Copeia 1998:559–569
- Pramuk JB, Grose MJ, Clarke AL, Greenbaum E, Bonaccorso E, Guayasamin JM, Smith-Pardo AH, Benz BW, Harris BR, Siegfreid E, Reid YR, Holcroft-Benson N, Wiley EO (2007) Phylogeny of finescale shiners of the genus *Lythrwrus* (Cypriniformes: Cyprinidae) inferred from four mitochondrial genes. Mol Phylogenet Evol 42:287–297
- Pyron M (1996) Sexual size dimorphism and phylogeny in North American minnows. Biol J Linn Soc 57:327–341
- Pyron M (2000) Testes mass and reproductive mode of minnows. Behav Ecol Sociobiol 48(132):132–136
- Pyron M, Fincel M, Dang M (2007) Sexual size dimorphism and ecomorphology of spotfin shiner (*Cyprinella spiloptera*) from the Wabash River watershed. J Freshwater Ecol 22:687–696
- R Development Core Team (2010) R: a language and environment for statistical computing R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org
- Reeve JP, Fairbairn DJ (2001) Predicting the evolution of sexual size dimorphism. J Evol Biol 14:244–254
- Rensch B (1960) Evolution above the species level. Columbia University Press, New York
- Ross MR, Reed RJ (1978) The reproductive behavior of the fallfish Semotilus corporalis. Copeia 1978:215–221

- Sabaj Pérez MH (ed) (2010) Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference. Version 2.0 (8 November 2010). http://www.asih.org/. American Society of Ichthyologists and Herpetologists, Washington, DC
- Schönhuth S, Mayden RL (2010) Phylogenetic relationships in the genus *Cyprinella* (Actinopterygii: Cyprinidae) based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 55:77–98
- Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton
- Simons AM, Berendzen PB, Mayden RL (2003) Molecular systematics of North American phoxinin genera (Actinopterygii: Cyprinidae) inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Zool J Linn Soc 139:63–80
- Smith RJ, Cheverud JM (2002) Scaling of sexual dimorphism in body mass: a phylogenetic analysis of Rensch's rule in primates. Int J Primatol 23:1095–1135
- Sokal RR, Rohlf FJ (1995) Biometry. WH Freeman, New York
- Stephens PR, Wiens JJ (2009) Evolution of sexual size dimorphisms in Emydid turtles: ecological dimorphism, Rensch's rule, and sympatric divergence. Evolution 63:910–925
- Stuart-Fox D (2009) A test of Rensch's rule in dwarf chameleons (*Bradypodion* spp.), a group with female-biased sexual size dimorphism. Evol Ecol 23:425–433
- Suttkus RD, Boschung HT (1990) Notropis ammophilus, a new cyprinid fish from southeastern United States. Tulane Stud Zool Bot 27:49–63
- Vervust B, Van Dongen S, Van Damme R (2009) The effect of preservation on lizard morphometrics—an experimental study. Amphibia-Reptilia 30:321–329
- Walker SPW, McCormick MI (2009) Sexual selection explains sexspecific growth plasticity and positive allometry for sexual size dimorphism in a reef fish. Proc R Soc Lond B 276:3335–3343
- Wallin JE (1992) The symbiotic nest association of yellowfin shiners, Notropis lutipinnis, and bluehead chubs, Nocomis leptocephalus. Environ Biol Fish 33:287–292
- Webb TJ, Freckleton RP (2007) Only half right: species with female-biased sexual size dimorphism consistently break Rensch's rule. PLoS One 2:e897. doi:101371/journalpone0000897
- Wong-Muñoz J, Cordoba-Aquilar A, Cueva del Castillo R, Serano-Meneses MA, Payne J (2011) Seasonal changes in body size, sexual size dimorphism and sex ratio in relation to mating system in an adult odonate community. Evol Ecol 25:59–75
- Young KA (2005) Life-history variation and allometry for sexual size dimorphism in Pacific salmon and trout. Proc R Soc Lond B 272:167–172
- Zamudio KR (1998) The evolution of female-biased sexual size dimorphism: a population-level comparative study in horned lizards (*Phrynosoma*). Evolution 52:1821–1833