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Many breeding systems have multiple mating, in which males or females mate with
multiple partners. With the advent of molecular markers, it is now possible to detect
multiple mating in nature. However, no model yet exists to effectively assess the
frequency of multiple mating (fmm)—the proportion of broods with at least two males
(or females) genetically contributing—from limited genetic data. We present a single-
sex model based on Bayes’ rule that incorporates the numbers of loci, alleles,
offspring, and genetic parents. Two genetic criteria for calculating fmm are
considered: the proportion of broods with three or more paternal (or maternal)
alleles at any one locus and the total number of haplotypes observed in each brood.
The former criterion provides the most precise estimates of fmm. The model enables
the calculation of confidence intervals and allows mutations (or typing errors) to be
incorporated into the calculation. Failure to account for mutations can result in
overestimates of fmm. The model can also utilize other biological data, such as
behavioral observations during mating, thereby increasing the accuracy of the
calculation as compared to previous models. For example, when two sires
contribute equally to multiply mated broods, only three loci with five equally
common alleles are required to provide estimates of fmm with high precision. We
demonstrate the model with an example addressing the frequency of multiple
paternity in small versus large clutches of the endangered Kemp’s Ridley sea turtle
(Lepidochelys kempi) and show that females that lay large clutches are more likely
to have multiply mated.

The discovery that multiple mating is

prevalent in the animal kingdom has

revolutionized the study of mating sys-

tems (Jennions and Petrie 2000; Krebs

and Davies 1997; Reynolds 1996). Multi-

ple mating occurs when individuals of

one sex mate with more than one in-

dividual of the opposite sex (Neff et al.

2000a; Reynolds 1996). Here, we define

the frequency of multiple mating as the

proportion of broods in a population that

contain genes from at least two males or

two females. Multiple mating is typically

detected by the presence of three pater-

nal (or maternal) alleles in the young

(Kelly et al. 1999; Milkman and Zeitler

1974; Ochando et al. 1996; Zane et al.

1999). However, this approach is conser-

vative, because not all multiply mated

broods will be detected—for example,

when two males have identical genotypes

or are homozygous for alternative alleles,

or when insufficient offspring are sam-

pled to detect all of the paternal alleles.

When less than three paternal alleles are

detected, several models have been de-

veloped to determine if the brood is

actually multiply mated. When two al-

leles are detected, multiple mating can be

inferred using either of two approaches:

(1) the frequency of the two alleles

differs significantly from the 1:1 ratio

expected under Mendelian inheritance

and assuming a single heterozygous sire

(Barry et al. 1992; Birdsall and Nash 1973;

Schwartz et al. 1989); or (2) the proba-

bility is sufficiently high (e.g., P . .95)

that two (or more) sires would have only

the two alleles detected, based on fre-

quencies of the alleles in the population

(Milkman and Zeitler 1974; Neff and

Pitcher 2002; Pedersen and Boomsma

1999; Williams and Evarts 1989). When

just one paternal allele is detected, only

the latter approach is appropriate. How-

ever, these approaches assume a priori

that multiply mated broods are just as

likely as singly mated broods, an assump-

tion that can lead to inaccurate assess-

ment.
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We have previously developed a model

that calculates the statistical power of

genetic analyses to detect multiple mat-

ing, based on detecting three or more

paternal alleles within an offspring sam-

ple (e.g., a brood) (Neff and Pitcher

2002). We now place this model in

a Bayesian framework and develop amod-

el to calculate the frequency of multiple

mating from a set of broods. This

framework explicitly defines the prior

probability of multiple mating and there-

by avoids assumptions made by previous

models. The model can incorporate

genetic and other biological data as well

as mutations (or typing errors). The

model can also be used to calculate

confidence intervals associated with

each estimate. We focus on mating

systems with single-sex multiple mating.

Single-sex multiple mating occurs when

there is multiple mating by only one sex.

Here, we define multiple mating at the

level of the brood (Neff et al. 2000a).

Therefore, single-sex multiple mating

gives rise to broods that contain the

genes of either a single female that has

mated with multiple males (genetic poly-

andry) or a single male that has mated

with multiple females (genetic polygyny).

All of the young within a brood are either

full or half sibs. Our model requires

single-locus codominant genetic data,

such as microsatellites or allozymes,

from the genetic parent and a sample of

the brood. A genetic sample from the

breeding population is also required to

estimate allele frequencies.

We consider two genetic criteria in

our model: (1) the proportion of broods

analyzed in which there are three or

more paternal (or maternal) alleles de-

tected at any one locus, and (2) the

number of haplotypes detected in each

brood. The second criterion has been

shown to be more sensitive at detecting

the actual number of mates contributing

to multiply mated broods (DeWoody

et al. 2000a,b). For the second criterion

we assume either full recombination (i.e.,

each locus segregates independently) or

no recombination. We show that seven

factors affect the accuracy and precision

of the estimates of the frequency of

multiple mating: (1) the genetic criterion

used in the model, (2) the number of loci,

(3) the number of alleles and their

frequencies, (4) the number of offspring

analyzed from the brood, (5) the number

of broods analyzed, (6) the number of

genetic parents and the reproductive

skew among the genetic parents, and

(7) the prior probability of multiple

mating.

We demonstrate our model with a bi-

ological example addressing multiple

paternity in the endangered Kemp’s

Ridley sea turtle (Lepidochelys kempi).

Female Kemp’s Ridley sea turtles may

mate with one or more males prior to

nesting and can lay multiple clutches

within a single nesting season, but they

do not appear to mate between clutches

(Mendonça and Pritchard 1986). Turtles

are capable of storing sperm for long

periods of time, and therefore multiple

paternity likely arises from sperm stores

(Kichler et al. 1999). To investigate the

frequency of multiple mating in Kemp’s

Ridley sea turtles, Kichler et al. (1999)

used up to three microsatellite loci to

genotype clutches from 26 females. They

developed a maximum likelihood model

to test whether each clutch was fertilized

by a single or two males and a second

model to test for a skew in paternity,

given a multiply mated clutch by two

males. They showed that the most likely

solution is that all clutches were multiply

sired (by the assumed two males), with

skewed paternity of 0.753 and 0.247.

However, they could not reject the

possibility that as few as 70% of clutches

were multiply sired. Kichler et al. also

found that multiple paternity was more

frequently detected in larger clutches

and qualitatively attributed this to the

increased likelihood of detecting three or

more paternal alleles in the larger sam-

ples. They did not consider the alterna-

tive that females that lay larger clutches

mate with multiple males more frequent-

ly than females that lay smaller clutches

(Trexler et al. 1997). We use our model to

calculate the frequency of multiple pa-

ternity and compare this estimate to the

estimate provided by Kichler and col-

leagues. Next, we investigate whether the

frequency of multiple paternity is lower

in small (,160 eggs, the median number

of eggs) versus large (�160 eggs)

clutches, and we use an exact statistic

based on the 95% confidence intervals

associated with the estimates to deter-

mine if large clutches (and hence larger

females) are more likely to multiply mate.

Methods

The Model

All of the variables used in the model are

defined in Table 1. Our model is based on

Bayes’ rule, which provides the appro-

priate framework to calculate conditional

probabilities and, hence, the frequency

of multiple mating from limited biologi-

cal data (Lewis 2001; Neff et al. 2001).

Suppose that genetic data has been

obtained from a sample of B broods and

that the single genetic mother is known

for each brood. By subtracting the

mother’s genetic contribution, the mini-

mum number of different paternal alleles

and haplotypes can be constructed from

the offspring. The maximum number of

paternal alleles that any one sire can

contribute to a brood is two per locus,

and the maximum number of haplotypes

across L loci is 2L if there is full re-

combination (i.e., loci segregate indepen-

dently) or 2 if there is no recombination

(Table 2).

First, consider the number of different

paternal alleles, and let Abl represent the

number of different paternal alleles de-

tected in brood b at locus l. A multiply

mated brood is detected when Abl . 2 for

a given b and any l. Next, define Pm as

the proportion of B broods in which a

multiple mating is detected. The actual

frequency of multiple mating within

a population may be higher than Pm,

because a brood may be multiply mated

even when two or fewer alleles are

detected at each locus. This can occur

when, for example, not all sires are

heterozygous at each locus, some sires

have identical alleles, or only a single

Table 1. Summary of the variables used in the models

Variable Description

Abl Number of different paternal alleles observed in brood b at locus l
B Number of broods analyzed (indexed by b)
Cb Number of offspring analyzed from brood b
F Mean number of sires contributing to a brood (for multiple paternity F . 1; otherwise F 5 1)
fmm Frequency of multiple mating
H Vector containing each value of Hb for all broods
Hb Number of different haplotypes observed among the Cb offspring from brood b
L Number of loci used to genotype genetic parent and brood
M Proportion of pseudo-broods that have same number of haplotypes as Hb

Pati Breeding success of sire i
Pla Population allele frequency of allele a at locus l
Pm Observed proportion of broods with three or more paternal (or maternal) alleles
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sire’s offspring are sampled from a nest

(due to incomplete sampling). The actual

frequency of multiple mating also may be

lower than Pm. This can occur from

sampling error introduced when not all

broods are analyzed from a population or

when a mutation arises in an offspring

from a brood of full sibs. Using Bayes’

rule, the probability of a certain frequen-

cy of multiple mating (fmm) given the

observed Pm can be calculated from:

Prðfmm jPmÞ¼
PrðPm j fmmÞ3PrðfmmÞ

PrðPmÞ
; ð1Þ

where fmm is an index to the possible

frequencies of multiple mating (0 � fmm �
1); Pr(fmmjPm) is the conditional proba-

bility of a frequency of multiple mating

given the proportion of broods with three

or more paternal alleles; Pr(Pmjfmm) is the

reverse: the probability of observing that

proportion given the frequency of multi-

ple mating fmm; Pr(fmm) is the prior

probability of the frequency of multiple

mating (independent of the genetic data);

and Pr(Pm) is the probability of observing

the proportion of broods with three or

more paternal alleles and represents

a normalization constant such thatR
Pr(fmmjPm)dfmm 5 1.

For the second genetic criterion, the

number of paternal haplotypes, we do

not consider the proportion of broods

with greater than 2L haplotypes, because

with even a moderate number of loci

multiply mated broods rarely exceed this

value (assuming full recombination). It is

therefore of limited value. We instead

define a vector H, containing B elements,

representing the number of haplotypes

observed at each brood. We thus con-

sider the actual distribution of haplo-

types across all broods. An expression

similar to Equation 1 can be developed to

calculate the probability of a certain

frequency of multiple mating, given this

distribution:

Prðfmm j HÞ ¼ PrðH j fmmÞ3PrðfmmÞ
PrðHÞ : ð2Þ

Equation 2 differs from Equation 1 only

in the genetic criterion used. While

Equation 1 examines the proportion of

broods that are multiply mated, Equation

2 examines the specific distribution of

haplotypes at each brood. Given these

equations, an unbiased estimate of the

actual frequency of multiple mating can

be calculated from (Neff et al. 2001):

fmm ¼ k1 �
Z 1

0

ðPrðfmm j PmÞ3 fmmÞdfmm ð3Þ

or

fmm ¼ k2 �
Z 1

0

ðPrðfmm jHÞ3 fmmÞdfmm; ð4Þ

where the line above the fmm denotes the

expected value, and ki is the normaliza-

t ion constant defined such thatR
Pr(fmmjPm)dfmm 5 1 or

R
Pr(fmmjH)dfmm

5 1. Confidence intervals can be estab-

lished for the estimate from Equation 3

(or Equation 4) by determining the

values of fmm (denoted below with an

asterisk) that cut off upper and lower

‘‘tails’’ of areas 1 2 a/2 and a/2, re-

spectively, from:

k1 �
Z f �mm

0

Prðfmm j PmÞdfmm ¼ a
2

or 1� a
2
:

ð5Þ

As an example, for the 95% confidence

interval, a equals 0.05, and Equation 5 is

solved for values of fmm that cut off the

lower and upper 2.5% of the normalized

Pr(fmmjPm) distribution. An analogous

expression can be developed for H.

To calculate the expected frequency of

multiple mating using either Equation 3

or 4, the reverse probability [i.e.,

Pr(Pmjfmm) or Pr(Hjfmm)] must first be

calculated for each possible value of fmm.

The reverse probability will depend on

all of: (1) the number of loci, (2) the

number of alleles and their frequencies,

(3) the number of offspring analyzed

from each brood, (4) the number of

genetic parents contributing to each

brood, and (5) the reproductive skew

among the genetic parents. An exact

formulation of Pr(Pmjfmm) or Pr(Hjfmm)

is therefore complex and difficult to

evaluate (Neff and Repka, unpublished

data). However, Monte Carlo algorithms

(Lewis 2001; Manly 1997) can be de-

veloped and provide an effective means

to estimate its value (Figure 1). Our

algorithms are similar to the one de-

veloped by Kichler et al. (1999), but allow

the number of sires and reproductive

skew to be defined a priori. Thus, any

number of sires and any level of skew can

be considered. Our algorithms similarly

enable mutation (and typing error) rates

to be incorporated into the analysis.

The prior probability Pr(fmm) must

also be calculated. This can be done

from other biological data, such as

behavioral observations during mating

or previous independent genetic analy-

ses. In Neff et al. (2001) we provide

formulas to calculate prior probabilities

from biological data. Generally, if nothing

is known about the actual distribution of

Pr(fmm), then assuming a uniform distri-

bution is the least biased (see analysis

and discussion in Neff et al. 2001). In this

case, the prior probability is independent

of fmm, and it becomes part of the

normalization constant ki in Equation 3

or 4. Finally, it is unnecessary to explic-

itly calculate the value of Pr(Pm) or

Pr(H), because they are independent of

fmm and become part of the normaliza-

tion constant ki.

Table 2. Minimum number of paternal haplotypes, identified from the genotypes of the known genetic parent and the offspring within its brood

Known parent Offspring Haplotypesa Min. no. of paternal haplotypesa

Locus 1 Locus 2 Locus 1 Locus 2 Independent Dependent Independent Dependent

A1A1 B1B1 A1A1 B1B1 A1B1 A1B1 4 4
A1A1 B1B2 A1B2 A1B2

A1A2 B1B1 A2B1 A2B1

A1A2 B1B2 A2B2 A2B2

A1A2 B1B2 A1A1 B1B1 A1B1 A1B1 2 3
A1A2 B1B2 A1B1 or A1B2

or A2B1 or A2B2

A1B1 or A2B2 A1B1 & A2B2 A1B1, A1B2, & A2B1

A1A2 B2B2 A1B2 or A2B2 A1B2

A2A2 B1B2 A2B1 or A2B2 A2B1

Examples include two known parents and four offspring from each of their broods genotyped with two loci. In some cases, paternal haplotypes may be ambiguous.
a Independent assumes full recombination between loci and dependent assumes no recombination.
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The Genetic Criteria

To examine the effects of each genetic

criterion on the accuracy and precision

of the estimates of fmm, we conducted the

following simulations (Table 3). First, we

assumed that either 5, 15, or 50 offspring

from each of 5 or 15 broods were

sampled from a population. The broods

were assumed to be very large, and

therefore the sampled offspring repre-

sented only a small proportion of the

brood. The frequency of multiple mating

was, on average, l 5 0.5 and followed the

(normal) prior probability distribution:

PrðfmmÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

p � ef½�ðfmm�lÞ2�=ð2r2Þg; ð6Þ

where r (the standard deviation) was set

to 0.25. In the event of a multiple mating,

it was assumed that either two of five

sires contributed with equal probability,

or five sires contributed with relative

paternities of 0.516, 0.258, 0.129, 0.065,

and 0.032 (i.e., each male had 50% the

paternity of the preceding male). We also

considered one simulation with very high

skew: two sires with 95% and 5% pater-

nity. The skew distribution was assumed

to be binomial (two sires) or multinomial

(five sires) (i.e., sampling error was

Figure 1. Schematic of the Monte Carlo simulation used to calculate the reverse probability based on (A) the proportion of broods with more than two paternal (or
maternal) alleles, or (B) the number of haplotypes observed in each brood.
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included), and the correct distribution

was used in the simulation and analysis.

Genotypes were generated for each

offspring at L loci, each having either five

or 20 equally common alleles. The num-

ber of haplotypes under assumptions of

either full recombination or no recombi-

nation was determined for each brood as

well as the proportion of broods with

three or more paternal alleles. The esti-

mated frequency of multiple mating was

then calculated according to Equations 3

and 4, using the Monte Carlo algorithms

(Figure 1) and assuming the correct prior

probability distribution (i.e., Equation 6).

The simulation was repeated 100 times,

and the mean difference (bias) between

the estimated and actual frequency of

multiple mating was calculated. The

associated 95% confidence interval

(based on the 100 samples) was also

calculated.

Mutations

To determine the effects of mutations on

the estimates of fmm, we conducted six

simulations, following the structure out-

lined above (Table 3). Three mutation

rates were considered: 0.l, 0.01, and

0.001. The highest mutation rate was

selected to elucidate the potential effects

of mutations, and the latter two were

selected as potential upper limits for

microsatellite loci (Jarne and Lagoda

1996). When a mutation occurred, the

allele in the offspring was randomly

changed to one of the other alleles at

the locus with equal probability. Only

mutations in the paternal germ line were

considered, to ensure that the offspring

matched the known mother at each

locus. For one simulation (Sim 13), we

included the mutation rate (and process)

in our model by incorporating it into the

Monte Carlo simulation that calculates

the reverse probability Pr(Pmjfmm). By

including the mutation rate in the latter

calculation, we tested whether the model

could account for the effects of muta-

tions. The estimated frequency of multi-

ple mating was then calculated, using

Equations 3 and 4, as above. The simula-

tion was repeated 100 times, and the

mean difference (bias) and the 95%

confidence interval between the estimat-

ed and actual frequency of multiple

mating were calculated.

The Prior Probability Pr(fmm)

To demonstrate the potential influence of

the prior probability on the estimate of

fmm, we conducted two simulations,

following the structure outlined above

(Table 3). In this case, the prior proba-

bility of the frequency of multiple mating

was assumed to follow the (normal)

distribution defined by Equation 6, where

l was equal to either 0.10 or 0.90 and r 5

0.25. The frequency of multiple mating

was calculated according to Equations 2

and 3, assuming the Pr(fmm) followed the

correct distribution (i.e., Equation 6) or

the uniform distribution defined by

Pr(fmm)5 1. The simulation was repeated

100 times, and the mean difference (bias)

and the 95% confidence interval between

the estimated and actual frequency of

multiple mating were calculated.

Kemp’s Ridley Sea Turtles

Next, we applied our model to address

the frequency of multiple paternity be-

tween small and large clutches from

a population of endangered Kemp’s Rid-

ley sea turtles. Using the genetic data

presented in Kichler et al. (1999), we

quantified the number of unique paternal

alleles detected in each clutch. The

frequency of multiple mating in the

population was first calculated using all

clutches. We then classified the clutches

as either small (,160 eggs, the median

number of eggs) or large (�160 eggs).

Because the number of sires contributing

to a multiply mated clutch was unknown,

we considered four scenarios: (1) two

sires with equal breeding success (mean

paternity of 50% for each male), (2) two

sires with skewed success (66.7% and

33.3%), (3) three sires with equal success

(33.3% for each male), and (4) three sires

with skewed success (57%, 28.5%, and

14.5%). Furthermore, because the prior

probability distribution (i.e., Pr(fmm))

was unknown, we assumed it followed

the uniform distribution. This may be the

least biased approach in the absence of

additional information (Neff et al. 2001).

For each scenario, the expected frequen-

cy of multiple mating and 95% confidence

interval were calculated using the first

genetic criterion and assuming a muta-

tion rate of 0.001 (Jarne and Lagoda 1996;

Pearse et al. 2002). From the confidence

distributions (estimated using higher-

order polynomials) the exact probability

Table 3. Parameters used in the simulations (Sim) to test the effectiveness of the two genetic criteria
and the bias introduced by assuming the incorrect prior probability distribution for the
frequency of multiple mating

fmm
b

Sim # Sires Skewa Broods Offspring Loci Alleles l r Mutation ratec Priord

Genetic criteria analysis

1 2 Even 15 5 3 5 0.50 0.25 — Correct
2 2 Even 15 15 3 5 0.50 0.25 — Correct
3 2 Even 5 15 3 5 0.50 0.25 — Correct
4 2 Even 15 15 3 20 0.50 0.25 — Correct
5 5 Even 15 15 3 20 0.50 0.25 — Correct
6 2 Even 15 15 1 5 0.50 0.25 — Correct
7 2 Even 15 15 8 5 0.50 0.25 — Correct
8 5 Skew 15 15 3 20 0.50 0.25 — Correct
9 2 High 15 15 3 5 0.50 0.25 — Correct
10 2 High 15 50 3 5 0.50 0.25 — Correct
11 2 Even 15 15 1 10 (5)e 0.50 0.25 — Correct

Mutation analysis

12 2 Even 15 15 3 5 0.50 0.25 0.1 (no) Correct
13 2 Even 15 15 3 5 0.50 0.25 0.1 (yes) Correct
14 2 Even 15 15 3 5 0.50 0.25 0.01 (no) Correct
15 2 Even 15 15 8 20 0.50 0.25 0.01 (no) Correct
16 2 Even 15 15 3 5 0.50 0.25 0.001 (no) Correct
17 2 Even 15 15 8 20 0.50 0.25 0.001 (no) Correct

Prior probability analysis

18 2 Even 15 10 2 5 0.10 0.10 — Correct
19 2 Even 15 10 2 5 0.10 0.10 — Uniform
20 2 Even 15 10 2 5 0.90 0.10 — Correct
21 2 Even 15 10 2 5 0.90 0.10 — Uniform

a Reproductive skew: even denotes equal breeding success for each male, skew denotes each subsequent male
has 50% the breeding success of the former male, and high denotes 95% and 5% paternity for each male (see
text).

b The prior probability of fmm was assumed to follow a normal distribution with mean l and standard deviation r.
c The yes/no denotes whether or not the mutation rate was incorporated into the calculation of reverse
probability.

d The prior probability distribution assumed in the analysis (either the correct normal distribution or the
incorrect uniform distribution).

e Ten census alleles: 1 with frequency 0.4 and 9 with frequency 1/15. Calculated from Neff et al. (2000b), there are
five effective alleles.
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that the frequency of multiple mating

was higher in large clutches (Lg) as

compared to small clutches (Sm) was

calculated from:

Prðf Lgmm . f SmmmÞ

¼
Z 1

f
Lg
mm¼0

Prðf Lgmm j PLg
m Þ

3
�Z f Smmm,f

Lg
mm

f Smmm¼0

Prðf Smmm j PSm
m Þdf Smmm

�
df Lgmm:

ð7Þ

Results

The Genetic Criteria

For all simulations where the correct

prior probability distribution was used

(Table 3), both the proportion of broods

containing three or more paternal alleles

(Pm) and the number of paternal haplo-

types (H) provided unbiased estimates of

the actual frequency of multiple mating

(i.e., the mean bias did not differ signif-

icantly from zero; P . 0.50 for all).

Generally, Pm performed as well or better

than H (with or without recombination),

as measured by the precision of the

estimates (Figure 2). H performed best

when there was no recombination be-

tween loci and provide the most precise

estimates of fmm when there were only

a few offspring analyzed. When a large

number of sires contributed to a multiply

mated brood and a large number of

offspring were analyzed from each

brood, the criteria performed about

equally well (e.g., Sim 5, 8, and 10).

Increasing the number of offspring

sampled from each brood or increasing

the number of broods analyzed from

a population, each increased the pre-

cision of the estimates of the frequency

of multiple mating (compare Sim 1 to 2,

Sim 3 to 2, and Sim 9 to 10). Thus, better

estimates can be obtained by increasing

the number of offspring analyzed and the

number of broods sampled. Interestingly,

loci with a greater number of alleles did

not provide much better estimates than

did loci with fewer alleles (compare Sim 2

to 4), and loci with similar numbers of

effective alleles (but different numbers of

census alleles) performed similarly (com-

pare Sim 6 to 11). Thus, only loci with

a moderate number of effective alleles

(e.g., five) are needed. On the other hand,

increasing the number of loci used did

increase precision (compare Sim 6 to 2).

However, as few as three loci can provide

precise estimates (compare Sim 2 to 7).

When two sire contribute equally to

a multiply mated brood, only three loci

with five equally common alleles are

required to provide precise estimates of

the frequency of multiple mating. Finally,

precision also increased as the number

of sires contributing to a multiply mated

brood increased or as the skew in their

paternity decreased (compare Sim 4 to 5,

Sim 8 to 5, and Sim 9 to 2).

Mutations

When unaccounted for in our model,

mutations resulted in an overestimation

of the frequency of multiple mating

(Figure 3). Overall, the bias increased

with mutation rate (compare Sim 12, 14,

and 16). Interestingly however, muta-

tions affected the two genetic criteria

differently. For the first criterion (pro-

portion of detected multiply mated

broods) and for the second (number of

haplotypes) without recombination, the

bias increased with the number of loci

used, while for the second criterion with

recombination, the bias decreased (com-

pare Sim 14 to 15 and 16 to 17). For

example, at a mutation rate of 0.001 and

when three loci were used, the bias in the

estimate based on the first genetic

criterion was less than 1% (0.004/0.50);

while when eight loci were used, it was

approximately 12% (0.062/0.50) (see Sim

16, 17). For the second criterion with re-

combination, when three loci were used,

Figure 2. Simulation results for the genetic criteria analysis. The mean bias and 95% confidence are shown for simulations 1–11. The results from the first genetic
criterion (proportion of broods with three or more paternal alleles) are on the left (closed square) of each simulation trio, those for the second criterion (number of
haplotypes) with full recombination are in the middle (open square), and those for the second criterion without recombination are on the right (open circle). The
numbers above the bars correspond to the parameters listed in Table 3.
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the bias was 6% (0.029/0.50); while when

eight loci were used, it was 2% (0.009/

0.50). Generally, the second genetic cri-

terion appeared to be less sensitive to

mutations, generating estimates thatwere

less biased. When the correct mutation

rate was included in the calculation of

fmm, no bias existed (compare Sim 12 to

13). However, mutations did decrease the

precision of the estimates (compare

Figure 3, Sim 13, and Figure 2, Sim 2). At

lower mutation rates that are typical of

microsatellite loci (�0.001), and when

the mutation rate was included in the

model, both criteria produced unbiased

estimates, but the first criterion pro-

duced estimates that were more precise

(data not shown).

The Prior Probability Pr(fmm)

Only when the correct prior probability

distribution was used did the analysis

provide accurate estimates of the fre-

quency of multiple mating. If the prior

probability was assumed to follow the

uniform distribution when in fact it fol-

lowed a normal distribution centered on

amean of 10% or 90%, the estimates of the

frequency of multiple mating were over-

estimated or underestimated by about

8%, respectively. The uniform prior prob-

ability distribution assumed that the

frequency of multiple mating was just as

likely to be any value between 0% and

100%. Thus, when the prior probability

actually followed the normal distribution

centered on a mean of 10%, for example,

the assumed uniform distribution under-

estimated the prior probability of lower

frequencies of multiple mating, while

overestimating higher frequencies.

Multiple Mating and Kemp’s Ridley

Sea Turtles

In total, we analyzed data from 26

clutches from Kichler et al. (1999). When

all clutches were analyzed simultane-

ously, we determined that the frequency

of multiple mating was, on average,

between 70% and 81% (Table 4), depend-

ing on the number of sires contributing

to a multiply mated clutch and their

reproductive skew. Generally, the esti-

mated frequency of multiple mating

decreased as the number of sires con-

tributing to each multiply mated clutch

increased or as the skew in their success

decreased (Table 4). Thus, assuming that

two sires did not have a greater re-

productive skew than 66.7% and 33.3%

(our Scenario 2), the estimate of 81%

(95% CI: 58%–97%) can be considered as

a maximum. Alternatively, assuming that

there were not more than three sires

contributing equally (our Scenario 3),

70% (95% CI: 48%–88%) can be consid-

ered a minimum.

Under the four scenarios considered

here, small clutches had a significantly

lower frequency of multiple mating as

compared to large clutches (Table 4).

The frequency of multiple mating in small

and large clutches ranged, on average,

from 42% to 50% and from 89% to 92%,

respectively, based on the number of

sires (and their reproductive skew) con-

tributing to a multiple mating. Because

our model incorporates the number of

offspring analyzed from each clutch, this

difference cannot be attributed to the

reduced ability of the genetic analysis

to detect a multiple mating in small

clutches (although the estimates of the

frequency of multiple mating in small

clutches were less precise).

Discussion

In this paper we define the frequency of

multiple mating (fmm) as the proportion

of broods within a sample that are

multiply mated. We develop a single-sex

model based on Bayes’ rule for calculat-

ing the frequency of multiple mating.

This model can be used when there is

multiple mating by only one sex (defined

at the level of the brood). Thus, it can

estimate the frequency with which fe-

males mate with more than one male

(genetic polyandry) or with which males

mate with more than one female (genetic

polygyny). We considered two genetic

criteria for calculating fmm: (1) the pro-

portion of broods in which there are

three or more paternal (or maternal)

alleles detected at any one locus, and

(2) the number of haplotypes (assuming

full recombination or no recombination)

detected in each brood. Although the

second criterion has been shown to be

more sensitive at detecting the actual

number of mates contributing to multiply

mated broods (DeWoody et al. 2000a,b),

we found that it was generally inferior to

the first criterion for calculating fmm.

This suggests that the frequency of mult-

iple mating correlates better with the

observed proportion of multiply mated

Figure 3. Simulation results for the mutation analysis. The mean bias and 95% confidence are shown for
simulations 12–17 (Table 3). The results from the first genetic criterion (proportion of broods with three or
more paternal alleles) are on the left (closed square) of each simulation trio, those for the second criterion
(number of haplotypes) with full recombination are in the middle (open square), and those for the second
criterion without recombination are on the right (open circle).
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broods (i.e., those containing three or

more paternal or maternal alleles) than it

does with the number of haplotypes

observed in each brood. For the second

criterion, we did not consider the pro-

portion of broods with more than 2L

haplotypes, because multiply mated

broods rarely exceed this value when

more than a few loci are used. However,

when there is no recombination only

three haplotypes are required to detect

a multiply mated brood regardless of the

number of loci used. In this case the loci

can be treated as a single locus with each

haplotype representing an ‘‘allele,’’ and

the first approach can be used.

The probability that a multiple mating

is detected depends on the number of

individuals genetically contributing to

a multiply mated brood as well as their

skew in fertilization success. For exam-

ple, when only two males contribute to

a multiple mated brood and these males

have very skewed paternities (95% and

5%), a multiply mated brood can be

difficult to detect, particularly when only

a few offspring are analyzed and the

brood is very large. To be 80% confident

that at least one offspring is sampled

from the male having only 5% paternity,

31 offspring would have to be analyzed

from each brood (Fiumera et al. 2001). To

be 95% confident, 58 offspring would

have to be analyzed. Thus, in systems

with large skew in fertilization success,

estimating the frequency of multiple

mating with any precision will require

large sample sizes. If the skew is assumed

(in the model) incorrectly to be much

lower, the frequency of multiple mating

will be underestimated. Conversely,

when the skew is assumed to be higher,

the frequency will be overestimated.

When the actual skew is unknown, it

might be useful to estimate it by analyz-

ing a subset of broods that, through

behavioral observations, for example,

are known to be multiple mated. While

the number of sires and their skew is

generally out of the control of research-

ers, all else being equal, populations that

have multiply mated broods consisting

of genes from a greater number of indi-

viduals with less skew will have more

precise estimates of the frequency of

multiple mating.

Mutations result in an overestimation

of the actual frequency of multiple

mating (Figure 3). Interestingly, at muta-

tion rates typical of microsatellite loci

(�0.001), mutations have little effect on

the accuracy of the estimates when only

a small number of loci are used (e.g.,

three or fewer). However, when a large

number of loci are used (eight or more),

and when the first genetic criterion is

used, the bias can be significant (e.g.,

.12%; Figure 3). Thus, while increasing

the number of loci can increase the

precision of the estimates, it also in-

creases the probability of a mutation,

which decreases accuracy. If the muta-

tion rate is unknown, it might be more

conservative to use a smaller number of

loci (e.g., three) to ensure that the bias in

the estimates is small, or to use the

second genetic criterion. However, if the

mutation rate is known, it can be easily

incorporated into the model, and un-

biased estimates of the frequency of

multiple mating can be obtained with

any number of loci. Furthermore, in this

case the first genetic criterion generates

more precise estimates as compared to

the second.

Most previous models that can be used

to calculate the frequency of multiple

mating have intrinsically assumed a uni-

form prior probability distribution. Thus,

these models assume that the frequency

of multiple mating is just as likely to be

anywhere between 0 and 100%. In the

context of parentage analysis, Neff et al.

(2001) show that this may be the best

assumption in the absence of other

biological data. However, here we show

that assuming a uniform prior probability

distribution can lead to a significant bias

in the estimate of fmm. Thus, if possible,

other biological data should be used to

estimate the prior probability. These

data may include behavioral observa-

tions during mating (e.g., the frequency

with which females are observed to mate

with multiple males), or previous, in-

dependent genetic analysis (Neff et al.

2001). Alternatively, if sufficient samples

and loci are used, such that all multiple

matings are detected unambiguously,

then the prior probability has little in-

fluence on the calculation of fmm. This

latter approach, however, can be costly

and time consuming.

We have demonstrated our model with

an empirical example involving endan-

gered Kemp’s Ridley sea turtles. Kichler et

al. (1999) first observed that large

clutches tended to have a greater fre-

quency of three or more paternal alleles,

as compared to small ones. However, they

were unable to factor out the increased

probability of detecting multiple matings

in larger clutches (because a greater

number of offspring were analyzed). Here,

we used our model to calculate the

frequency and 95% confidence interval

of multiple mating in all of the clutches

analyzed by Kichler et al., as well as in the

small (,160 eggs) and large (�160 eggs)

clutches separately. Our model shows

that the expected frequency of multiple

mating in Kemp’s Ridley sea turtles across

all clutches was, on average, between 70%

and 81%, depending on the assumed

number of sires and their reproductive

skew. As the number of sires that contrib-

ute to a multiple mating increased, or as

the skew in their paternity decreased, the

estimated frequency decreased (Table 4).

Assuming that two males contribute to

each multiple mating with skewed pater-

nities of 66% and 33% [similar to the

estimates of Kichler et al. (1999); also see

Pearse et al. (2002)], the frequency of

multiple mating across all clutches was

81% with a 95% confidence interval of

58%–97%. This is consistent with the

estimates derived by Kichler et al.

(1999), which were 70%–100% with a most

likely estimate of 100%. Thus, multiple

mating is quite high in Kemp’s Ridley sea

turtles and is comparably higher than in

a recent study on painted turtles

(Chrysemys picta) that reported only 30%

of clutches were multiply mated (Pearse

et al. 2002). Within small clutches of

Kemp’s Ridley (under the 66%:33% pater-

nity skew scenario), the frequency of

Table 4. Estimates of the frequency of multiple mating in a population of Kemp’s Ridley sea turtles

Frequency of multiple mating (%)

Sires Skewa All Large Small P

2 Even 78.1 (55–95) 91.2 (70–99) 48.8 (37–80) .014
2 Skew 80.9 (58–97) 91.7 (71–99) 50.3 (20–83) .017
3 Even 70.2 (48–88) 89.3 (67–99) 41.8 (14–73) .007
3 Skew 72.0 (50–91) 90.9 (69–99) 42.7 (16–75) .007

Four scenarios were considered for the number of sires and their reproductive skew. The frequency of multiple
mating for all clutches (n 5 26), large clutches (n 5 13), and small clutches (n 5 13) are presented, and the 95%
confidence intervals appear in parentheses. The P-value from an exact test (Equation 7) compares the
frequency of multiple mating in large versus small clutches.

a Even denotes equal breeding success for each male and skew denotes each subsequent male has 50% as much
the breeding success as the former male (see text).
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multiple mating was 50% (20%–83%), and

within large clutches it was significantly

higher at 92% (71%–99%). Thus, females

that lay larger clutches [likely larger

females (Hirth 1980; Trexler et al. 1997)]

are considerably more likely to have

multiply mated as compared to females

that lay smaller clutches. Pearse et al.

(2002) also report a similar finding in their

painted turtles, suggesting that increased

multiple mating by large females may be

common in turtles.

In conclusion, we have developed

a model based on Bayes’ rule to calculate

the frequency of multiple mating from

limited genetic data. The model permits

the calculation of the associated confi-

dence intervals and can include mutation

and typing error rates. The model explic-

itly defines the prior probability of fmm

and shows that only when this probabil-

ity distribution is known are accurate

estimates obtained. We have demonstrat-

ed the model using genetic data from

clutches of Kemp’s Ridley sea turtles.

This analysis shows that females that lay

larger clutches are more likely to have

multiply mated. The model is available as

anexecutable programwritten in theC11

programming language at the Web site

http://publish.uwo.ca/;bneff/software.

htm#FMM. It should prove valuable to

researchers assessing the frequency of

multiple mating in nature.
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