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Summary

The effects of inbreeding in both captive and wild-caught
species and populations have been reported to affect a wide
variety of life history traits. Recently, the effects of inbreed-
ing on reproductive traits such as sperm quality have become
a subject of particular interest for conservation biology, evo-
lutionary ecology, and management of captive populations.
This study investigated the effects of inbreeding on sperm
quality in a captive population of experimentally inbred and
outbred lake trout, Salvelinus namaycush. 1t was found for
moderately to highly inbred males (males with half-sib and
full-sib parents, respectively), that sperm quality traits (veloc-
ity, motility, linearity, longevity, spermatocrit and morphol-
ogy) showed no apparent inbreeding depression. The
apparent lack of inbreeding effects on sperm quality traits
may be due to several factors including (i) no inbreeding
depression in the studied population, due to purging, low
levels of inbreeding or lack of detection at the gametic level,
or (ii) relaxed selective pressures due to benign hatchery con-
ditions. The present study provides significant insight into
the effects of inbreeding on sperm quality in a captive-bred
salmonid population, and has important implications for
hatchery rehabilitation programs for this species.

Introduction

Inbreeding, defined as the mating between relatives, can
reduce the fitness of individuals across a wide variety of spe-
cies. A reduction in fitness (or phenotype value in practical
terms) of offspring from matings between related individuals
compared to the fitness of offspring from randomly mated
individuals is known as inbreeding depression (Wright, 1977;
Charlesworth and Charlesworth, 1999). Two hypotheses
(dominance and overdominance) have been posited to
explain potential genetic mechanisms for inbreeding depres-
sion (Wright, 1977). Under the dominance hypothesis,
inbreeding results in an increase in homozygosity, which in
turn leads to the unmasking of deleterious recessive alleles
that reduce fitness (Charlesworth and Charlesworth, 1999).
The overdominance hypothesis states that an increase in
homozygosity leads to reductions in fitness of inbred individ-
uals at loci where heterozygotes had a selective advantage

over homozygotes (Charlesworth and Charlesworth, 1999).
Overall, reduced fitness due to inbreeding is likely a combi-
nation of both of these mechanisms, which can be difficult to
distinguish (Keller and Waller, 2002). Across species, reduced
fitness as a result of inbreeding has been reported in both
captive and wild populations (Lacy et al., 1993; Crnokrak
and Roff, 1999; Keller and Waller, 2002). Fitness losses asso-
ciated with inbreeding are caused by a number of factors
including increased parasite susceptibility (Rijks et al., 2008),
growth deformities (Grant and Grant, 1995), decreased survi-
vorship (Jiménez et al., 1994), and reduced fertility (Chen,
1993). As an individual’s fitness is contingent on both their
survival to sexual maturity and their subsequent reproductive
success (Stearns, 1992), inbreeding depression can pose a
serious threat to the viability of populations (Hedrick and
Kalinowski, 2000; Wang et al., 2002).

Inbreeding depression has primarily been studied in traits
that are closely linked to survival and/or reproduction
(Crnokrak and Roff, 1999; Saccheri et al., 2005). Although
the primary focus of many studies has typically been to look
at reproductive traits such as mating success (Joron and
Brakefield, 2003) and fertility (Johnston, 1992), inbreeding
depression has also been shown to affect fitness in more
cryptic ways, such as reduced sperm quality (Fitzpatrick and
Evans, 2009). This phenomenon has been shown in both wild
rabbits (Oryctoloagus cuniculus) and lions (Pantheo leo), for
example, where decreased levels of heterozygosity were asso-
ciated with increased levels of sperm abnormalities (Wildt
et al.,, 1987; Gage et al., 2006). Inbreeding depression has
also been shown to affect sperm performance traits such as
motility and velocity, which are important determinants of
fertilization success in many species (Fitzpatrick and Evans,
2009). It has been suggested that the associated decrease in
sperm performance traits with inbreeding is mediated by
sperm abnormalities due to DNA damage (Ruiz-Lopez et al.,
2010). In white-footed mice (Peromyscus leucopus noveborac-
ensis) and Mexican gray wolves (Canis lupus baileyi), an
increase in inbreeding led to significant reductions in sperm
motility (Asa et al., 2007, Malo et al., 2010), while in Florida
panthers (Felis concolor coryi) sperm concentration and
motility were both significantly lower compared to non-
inbred panther populations (Barone et al., 1994). It is
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thought that sperm may be particularly susceptible to the
effects of inbreeding depression given the complex nature of
spermatogenesis and the high potential for mutational
defects (Gage et al., 2006). Given that sperm quality is indi-
rectly related to fitness, it becomes an important mechanism
influencing reproductive traits that have been affected by
inbreeding, such as reductions in fertilization success (Gage
et al., 2006). The majority of studies that have investigated
the effects of inbreeding on sperm quality have focused on
mammals; by contrast, studies on other taxa have been lar-
gely ignored (but see Zajitschek et al., 2009; Zajitschek and
Brooks, 2010).

Lake trout (Salvelinus namaycush) is an interesting species
to study the effects of inbreeding depression due to its unique
life history and reproductive behaviour compared to other
salmonids. Unlike most salmonids, lake trout are a long-
lived iteroparous species that have a tendency to breed noc-
turnally (Gunn, 1995). As a result, lake trout lack sexual
dimorphism and little to no overt male-male competition
exists (Gunn, 1995; Esteve et al., 2008). Given these unique
traits, it is possible for sexual selection to be most effective at
the gamete level in this species. In addition, lake trout popu-
lations in the Laurentian Great Lakes suffered major declines
throughout the 1940 and 1950s as a result of overfishing,
predation by the invasive sea lamprey (Petromyzon marinus),
and habitat degradation (Walters et al., 1980; Selgeby et al.,
1995). Since then, rehabilitation efforts have relied heavily on
stocking fish from hatchery broodstocks that were founded
from remnant Great Lakes populations (Guinand et al.,
2003) but may be vulnerable to hatchery rearing practices
and inadvertent population-level inbreeding (Miller and
Kapuscinski, 2003).

In this study, we looked at whether inbreeding affects
sperm quality in a captive-bred population of lake trout. To
test this hypothesis, we compared sperm quality metrics of
mature male progeny from four mating categories examining
inbreeding in lake trout: (i) full-sib matings, (i) maternal
and (iii) paternal half-sib matings, and (iv) unrelated adults.

Materials and methods
Creation of family lines

The lake trout in this study originated from wild spawn col-
lections from a native population in two interconnected
lakes in Haliburton, Ontario (Clean and Macdonald lakes,
lat. 45.2501; long. —78.5329). In 1983, wild fish were manu-
ally spawned [10 single-pair crosses (10 males and 10
females)] to establish 10 presumably unrelated families for
studies in captivity. All families were reared at the Ontario
Ministry of Natural Resources Codrington Fisheries
Research Facility, located in Codrington, Ontario (lat.
44.1468; long. —77.8045). All fish at the hatchery were
freeze-branded and fin clipped to allow for individual and
family identification. In 1994, once males and females were
sexually mature, four unrelated offspring from the single-
pair crosses (two males and two females) were chosen hap-
hazardly and used to set up a 2 x 2 full-factorial cross,
producing four unrelated families (Fig. la). In 2003, the
mature adults from these four families were used to create

experimental inbreeding crosses. A full-factorial cross with
eight females and four males was used to create 32 families,
each exhibiting four levels of inbreeding based on mating
parents that were: (i) full siblings, (ii) maternal half-siblings,
(iii) paternal half-siblings and (iv) unrelated individuals
(Fig. 1b). On 9 and 10 November 2009, 102 males from the
32 families were sampled for milt. Data has shown that
sperm quality (i.e. motility, velocity, linearity, longevity, and
spermatocrit) tends to peak in the middle of the spawning
season (early November to early December; Johnson et al.,
2013), therefore we can exclude any seasonal effects on
sperm quality in this study.

Fish husbandry and sperm collection

Individuals were housed in five circular tanks (5 diameter
with a working depth of 24”) fed by untreated water from
the headwaters of Marsh Creek (lat.: 44.1834; long.:
—77.7828) and kept under a natural photoperiod and tem-
perature regime. Males and females in each tank were
prevented from mating by a lack of natural substrate on the
bottom (Yeates et al., 2007). Fish were fed AquaBrood feed
(7.5 mm pellet; Corey Nutrition Company, Fredericton, NB,
Canada) at 0.5% body weight per day. Total length and
weight (mean + SEM) of the males at the onset of spawning
were 5399 £ 3.8 mm and 1697.1 + 36.7 g, respectively.
Males were anaesthetized using a 40-50 ppm solution of
MS-222 (Syndel International, Vancouver, BC, Canada).
Milt samples were collected, using slight pressure to the
abdomen (after the genital papilla was dried) and massaging
towards the urogenital pore, in 532 ml Whirl-Pak©, plastic
bags (Nasco, Newmarket, ON, Canada) and stored in a
cooler ~8°C. Extra care was taken to ensure that urine, feces,
blood, or freshwater did not contaminate the milt samples.

Sperm activity

Sperm were video-recorded using a CCD black and white
video camera (XC-ST50, Sony, Japan) module at 50 Hz ver-
tical frequency, mounted on an external-phase contrast
microscope (CX41 Olympus, Melville, NY) with a 10x nega-
tive-phase magnification objective (Pitcher et al., 2009).
Sperm performance traits (velocity, motility, linearity, and
longevity) were assessed within 3 h of collection, by activat-
ing an aliquot (<0.2 ul) of pure milt with 10 ul of source
water circulating through the hatchery. Water temperature
was maintained by holding water samples in a cooler at
~8°C; which was the temperature of the water on 9 and 10
November 2009. Once video recordings were taken (in dupli-
cate), sperm traits were analyzed, using the HTM-CEROS
sperm analysis system (v. 12, CEROS; Hamilton Thorne Bio-
sciences, Beverly, MA) set at the following parameters: num-
ber of frames = 60, minimum contrast = 11,
photometer = 55-65, minimum cell size = 3 pixels. Sperm
velocity, motility and linearity were recorded at 5 and 10 s
post-activation. Sperm velocity was estimated as the average
velocity measured over the actual point-to-track followed by
the cell (i.e. curvilinear velocity, VCL). Sperm motility was
calculated as the percentage of motile cells divided by the
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Fig. 1.

Breeding history of experimental population. (a) In 1994, four lake trout (Salvelinus namaycush) (two males and two females) were

used to set up a 2 x 2 factorial cross, producing four families. (b) Sexually mature offspring from the 2 x 2 cross were used to set up experi-
mental inbreeding crosses in 2003. Eight individual females were mated to the same four same males to produce matings between full sibs
(FS), maternal half sibs (MHS), paternal half sibs (PHS) and unrelated individuals (U). Subscript numbers = female family origin (family 1,
2, 3 or 4) and subscript letters = different females, same family. Numbers in brackets = number of mature males from each family assessed

for sperm quality traits

total number of cells. Sperm path linearity, which is the
straightness with which a sperm cell moves per unit of dis-
tance traveled, was measured as the departure of the cell
track from a straight line (i.e. VSL/VCL). Straighter swim-
ming sperm will have a higher linearity value. Longevity was
estimated as the time for ~95% of the sperm cells to become
immotile (Gage et al., 2004). The CASA system uses the
average number of sperm per recorded track to estimate
sperm performance traits. Each track was manually checked
for quality control. If too few sperm were observed or if
sperm were not properly recorded within the desired time
frame (>5 s after the starting of video recording) tracks were
removed from subsequent analyses.

Spermatocrit

Spermatocrit was estimated by adding milt (250-1000 ul), for
each male, into a 1500 ul eppendorf tube. The tubes were
then centrifuged for 10 min at 7500 g (accuSpin Micro 17,
Fisher Scientific, Fair Lawn, NJ). Centrifuging milt separates
sperm and seminal plasma into opaque white and clear

solutions, respectively (Hoysak and Liley, 2001). To calculate
spermatocrit, the volume of the opaque layer was recoded
for each sample and then divided by total milt volume and
expressed as a percentage.

Sperm morphology

Milt was collected from a subset of males (n = 58; 12 full
sibs, 11 maternal half-sibs, 18 paternal half-sibs and 17
unrelated males). Milt samples (1.5 ul) were preserved in
250 pl of Courtland’s saline solution with 2.5% glutaralde-
hyde. Three sperm morphology smears for each male were
made by aliquotting 5 ul of the preserved sperm onto a
slide and smearing the cells using a separate slide, followed
by a 10 s air drying period. The slides were stained using a
Kwik-Diff ™ staining kit (Thermo Fisher Scientific, Kala-
mazoo, MI). The staining protocol was modified from
methods developed by Tuset et al. (2008) so that each slide
was fixed for 5 min instead of the manufacturer’s recom-
mendation of five x 1 s dips. Slides were then rinsed in dis-
tilled water and allowed to air-dry for 24 h. All slides were
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permanently sealed with a coverslip using ~150 pl of Per-
mount mounting medium (Fisher Scientific Company,
Ottawa, Ontario, Canada). Slides were observed at 40x
(tails) and 100x (heads) magnification under oil immersion
using an Olympus BX52 microscope (Fig. 2a). Sperm head
and tail images were captured using an Olympus DP72 digi-
tal camera and later analyzed using an Imagel plug-in
(Fig. 2b) (Butts et al., 2011). Sperm heads
(mean £ SEM = 70 £ 3 per male) were measured for length
and width, while flagella (mean + SEM = 29 + 4 per male)
were measured for length.

Statistical analyses

One-way ANovA models were used to compare Fulton’s condi-
tion factor of adult males [K=adult mass/(total
length)® x 10 000], sperm activity traits, spermatocrit, and
sperm morphology between the levels of inbreeding. Sperm
velocity, motility and linearity were analyzed at 5 s post-acti-
vation (Butts et al., 2012; Galvano et al., 2013). It has been
shown in salmonids that once sperm is released and activated,
there is ~5 s to fertilize eggs (Hoysak and Liley, 2001). There-
fore, a post-activation time of 5 s is the most biologically rele-
vant as it corresponds to conditions found in the wild. All
traits were tested for normality using the Shapiro-Wilk test
and homogeneity of variances using Levene’s test. Motility
data were arcsine square root transformed. Due to violations
of ANovaA assumptions, a Kruskal-Wallis non-parametric test
was used to analyze Fulton’s K, longevity, and spermatocrit.
In the event non-significant effects were detected, post hoc
power analysis was conducted using the statistical software,
GPower (http://www.gpower.hhu.de/en.html).

Results

Inbreeding level had no effect on sperm velocity
(F3’98 = 203, P = 012, Flg 3&), motility (F3’98 = 017,
P =0.92; Fig 3b) or linearity (F39s3=1.30, P =0.28;

Fig. 3c). Sperm longevity (;*=2.86, d.f.=3, P=04l;
Fig. 4a), spermatocrit levels (7> =4.60, d.f. =3, P =0.20;
Fig. 4b) and Fulton’s K (=135, df =3, P=0.72;
Fig. 4c) were also not significantly affected by inbreeding
level, nor was the sperm head width (F3s, = 0.62, P = 0.60;
Fig. 5a), head length (F5s, = 0.61, P = 0.60; Fig. 5b), or fla-
gellum length (F3 5, = 0.73, P = 0.54; Fig. 5c).

Post hoc power analyses revealed that the mean statistical
power for the sperm traits measured in this study was 0.82
(velocity = 0.93; motility = 0.55; linearity: 0.85; longevity:
0.74; spermatocrit: 0.74; head width: 0.95; head length: 0.95;
flagellum length: 0.82). Thus, there was adequate power to
effectively test the hypotheses that were generated for these
analyses.

Discussion

Our findings did not provide support for the hypothesis
that inbreeding affects sperm quality in a captive-bred pop-
ulation of wild-origin lake trout. Instead, we found no
apparent inbreeding depression for sperm quality of males
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Fig. 2. Digital image of lake trout (Salvelinus namaycush) sperm
(100x magnification) (a) before and (b) after running the automated
sperm morphology analysis (ASMA) plug-in developed for open-
source software (IMAGEJ)

that were progeny of full-sib and maternal and paternal
half-sib matings compared to those with unrelated parents.
These results do not follow the general pattern reported in
the literature of inbreeding causing detrimental effects on
sperm quality (Wildt et al., 1987; Barone et al., 1994; Gage
et al., 2006). For example, in a recent comparative analysis
across 20 endangered mammal species, increased levels of
inbreeding inferred from decreased levels of heterozygosity
significantly reduced sperm quality traits across both wild-
caught and captive populations (Fitzpatrick and Evans,
2009). Here, we discuss possible explanations as to why
inbreeding did not lead to inbreeding depression in our
study.

It is possible that inbreeding depression may not exist in
the studied population. This could be due to several factors
including previous purging of deleterious recessive alleles in
ancestral wild generations, a lack of inbreeding detection at
the gamete level or a lack of inbreeding depression after only
one generation of inbreeding. The evolutionary history of
lake trout, along with their unique life history strategy may
provide support for a lack of detection. Following their
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Fig. 3. Observed relationships between (a) sperm velocity, (b) per-
cent motility, and (c) linearity from four mating categories examin-
ing inbreeding [full sibling (FS) matings, maternal (MHS) and
paternal (PHS) half-sibling matings and unrelated adults (UN)] in
captive lake trout (Salvelinus namaycush). Center line in each
box = the median. Upper and lower bounds of the box = upper
and lower quartiles, respectively; extended lines = maximum and
minimum values, excluding outliers (indicated as dots). Raw data
are presented
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Fig. 4. Observed relationships for (a) sperm longevity, (b) spermat-
ocrit, and (c) Fulton’s condition of adult male lake trout (Salvelinus
namaycush) from four mating categories examining inbreeding [full
sibling (FS) matings, maternal (MHS) and paternal (PHS) half-sib-
ling matings and unrelated adults (UN)]. Center line in each
box = the median. Upper and lower bounds of the box = upper
and lower quartiles, respectively; extended lines = maximum and
minimum values, excluding outliers (indicated as dots). Raw data
are presented
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head length, and (c) flagellum length from four mating categories
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paternal (PHS) half-sibling matings and unrelated adults (UN)] in
lake trout (Salvelinus namaycush). Center line in each box = the med-
ian. Upper and lower bounds of the box = upper and lower quar-
tiles, respectively; extended lines = maximum and minimum values,
excluding outliers (indicated as dots). Raw data are presented

post-glacial colonization at the end of the Pleistocene, the
majority of lake trout populations inhabit small inland lakes,
which act as isolated, closed systems (Wilson and Hebert,

1998). As long-lived, iteroparous top predators in these cold,
low productivity lakes, lake trout populations tend to be rel-
atively small, and are correspondingly vulnerable to genetic
drift (Wilson and Mandrak, 2004). This life history strategy,
along with the lake trout’s natural distribution, may have
resulted in generations of inbreeding and consequent purging
of lethal alleles (Larsen et al., 2011). Purging is a mechanism
that reduces the fitness-related losses of inbreeding through
the removal of deleterious recessive alleles via natural selec-
tion (Thornhill, 1993; Hedrick, 1994). Purging is more likely
to occur in small populations with a long history of inbreed-
ing and consequently an accumulation of these lethal alleles
(Crnokrak and Barrett, 2002). Once populations have been
purged of deleterious recessive alleles, further inbreeding
would in theory have no effect on the fitness of the popula-
tion under the dominance hypothesis of inbreeding depres-
sion (Charlesworth and Charlesworth, 1999). Evidence for
purging has been shown in both plants and animals
(reviewed in Crnokrak and Barrett, 2002). For example, in
guppies (Poecilia reticulata), purging was demonstrated in a
captive population that had been experimentally reared for
10 generations (Larsen et al., 2011). Inbreeding depression in
offspring survival and clutch size increased throughout the
first 4-6 generations of inbreeding followed by a recovery in
fitness thereafter, despite further generations of inbreeding
(Larsen et al., 2011). In a review examining evidence of purg-
ing across 25 captive mammal species, a significant trend in
purging on neonatal survival was found in 15 out of the 17
species that exhibited inbreeding depression (Ballou, 1997).
Although this review failed to provide broad support for
purging, it suggested that the effects of inbreeding depression
appear to be largely expressed in early life history traits (Bal-
lou, 1997).

In salmonids, there is evidence for inbreeding depression
affecting early life history traits such as fry mortality in rain-
bow trout (Oncorhynchus mykiss) (Kincaid, 1976), while no
effect was found for fertility or egg hatching success (Su
et al.,, 1996). Overall, in order to conclude that inbreeding
depression in our population had no effect at the gamete
level, we would need more information on the extent of pop-
ulation-level inbreeding and drift in ancestral generations of
the wild population. Without this, it is difficult to determine
whether deleterious recessive alleles were previously lost in
our population due to the conditions and assumptions
underlying purging as a mechanism for reducing inbreeding
depression. An understanding of the ancestral inbreeding his-
tory, genetic mechanisms responsible for inbreeding i.e. dom-
inance (necessary for purging) or over-dominance, and
strength of selection pressures on deleterious recessive alleles
in the wild and in captivity is needed to provide support for
purging (Wang et al., 2002).

The apparent lack of inbreeding depression in the study
population could also be attributed to the fish being sub-
jected to only one generation of experimental inbreeding.
This could lead to underestimates of inbreeding depression
on male reproductive potential. In wild salmonids, inbreed-
ing is expected to be a gradual process that takes several
generations to demonstrate any negative effects (Wang
et al., 2002). In rainbow trout, Su et al. (1996) suggested
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that a lack of detection of inbreeding depression on male
fertilization success could be attributed to low levels of
inbreeding in their study. Several studies have found evi-
dence for inbreeding depression in species that have experi-
enced multiple generations of inbreeding (Crnokrak and
Barrett, 2002). In a study on guppies by Zajitschek et al.
(2009), four generations of brother-sister matings (F = 0.59)
were required to detect any evidence of inbreeding depres-
sion on sperm competitiveness. Furthermore, moderately
inbred males (F = 0.25) showed no reduction in sperm qual-
ity. With one generation of inbreeding in our study, male
offspring from full sibling matings had an F value of 0.25,
while those from maternal and paternal half-sib matings
had F values of 0.125. Accordingly, our results are consis-
tent with those of Zajitschek et al. (2009), despite the mark-
edly different systems of mating and sexual selection
between the two species (Gunn, 1995; Esteve et al., 2008;
Zajitschek and Brooks, 2010). Although we did not find evi-
dence for inbreeding depression in our population, we can-
not exclude the long-term effects, as successive generations
of inbreeding might still result in inbreeding depression
(Wang et al., 2002). Soft selection due to captive conditions
has been shown to mask the effects of inbreeding depression
(Crnokrak and Roff, 1999; Armbruster and Reed, 2005).
Differences in the severity of inbreeding depression between
captive and wild-caught populations have been documented
in a variety of species. Benign living conditions often result
in an underestimate of the effects of inbreeding due to a
lack of environmental pressure (Crnokrak and Roff, 1999;
Hedrick and Kalinowski, 2000; Keller and Waller, 2002;
Armbruster and Reed, 2005). These environmental pressures
range from unpredictable climate conditions, disease, and
resource limitation to the absence of competition for mates
(Crnokrak and Roff, 1999; Joron and Brakefield, 2003).
Studies that involve the introduction of captive bred indi-
viduals into their wild environments often show an increase
in the negative effects due to inbreeding. For example, in
white-footed mice (Peromyscus leucopus noveboracensis), sur-
vivorship rates were lower for inbred individuals reintro-
duced into the wild, compared to those living under
laboratory conditions (Jiménez et al., 1994). In African but-
terflies (Bicyclus anynana), the effects of inbreeding depres-
sion on male mating success were heightened when inbred
individuals experienced a natural free flight environment
compared to a caged environment (Joron and Brakefield,
2003).

As male-male competition is generally absent in captive
populations, negative effects of inbreeding depression are
frequently exposed when males directly face competition
for mates (Meagher et al., 2000). For example, in Nile tila-
pia (Oreochromis niloticus), reproductive success of inbred
males, defined as the proportion of offspring sired in a sin-
gle spawning event, was decreased when there were an
increased number of males competing for copulations
(Fessehaye et al., 2009). Male-male competition at the
gamete level has also been shown to increase the effects
of inbreeding depression. In the flour beetle (7ribolium
castaneum), male fertility was not significantly different
between inbred and outbred individuals, however under

competition, inbred males were found to suffer from
decreased sperm competitiveness (Michalczyk et al., 2010).
In guppies (Poecilia reticulata), sperm number was signifi-
cantly reduced in inbred compared to outbred males,
although this effect was not observed under laboratory
conditions (Zajitschek and Brooks, 2010). The lake trout
in this study had been living in a captive environment for
7 years. Although conditions were semi-natural, with no
manipulation of water quality (i.e. water was provided by
a natural stream) or temperature, competitive interactions
for both resources and mates were absent. Evidence for
relaxed selection on lake trout from the same hatchery
used in this study has been demonstrated. For example,
McDermid et al. (2010) found that wild-caught lake trout
out-performed hatchery-reared lake trout in a number of
life history traits, including fertilization success. Lake trout
in the wild have an opportunity for post-copulatory sexual
selection, as multiple males have been observed accompa-
nying a spawning female (Esteve et al., 2008). The poten-
tial loss of this selective pressure on sperm competition in
males living in captivity may help to explain why both
inbred and outbred individuals did not differ in sperm
quality metrics.

In summary, sperm quality in lake trout appears to be
unaffected by experimental levels of inbreeding in our popu-
lation. Coefficients of inbreeding depression (0) can be used
to standardize and compare fitness-related traits affected by
inbreeding depression across species. They are calculated as
0o=1 — (X1/X,), where X =inbred trait value and
X, = outbred trait value (adapted from Crnokrak and Roff,
1999). In our study, coefficients of inbreeding depression
were extremely low compared to those calculated for sperm
traits in other species. Our values ranged from 0.12 for
sperm longevity to —0.09 for spermatocrit, while  values for
sperm traits in other studies averaged 0.26 (Wildt et al.,
1987; Barone et al., 1994; van Eldik et al., 2006). Therefore,
we infer with a high level of certainty that sperm quality of
the experimental fish did not suffer from the effects of
inbreeding depression. The apparent lack of inbreeding
depression for sperm quality may be due to either a true lack
of inbreeding depression in the population or a release from
sperm competition and sexual selection under hatchery con-
ditions. Our study highlights the importance of the condi-
tions and assumptions needed to detect inbreeding
depression at the gamete level, and provides important
insights into inbreeding for a hatchery-reared salmonid pop-
ulation.
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